Centre for Integrative Neuroscience, University of Tübingen, Germany.
Institute for Ophthalmic Research, Tübingen, Germany.
J Physiol. 2017 Aug 15;595(16):5507-5515. doi: 10.1113/JP273648. Epub 2017 May 4.
Visual processing starts in the retina. Within only two synaptic layers, a large number of parallel information channels emerge, each encoding a highly processed feature like edges or the direction of motion. Much of this functional diversity arises in the inner plexiform layer, where inhibitory amacrine cells modulate the excitatory signal of bipolar and ganglion cells. Studies investigating individual amacrine cell circuits like the starburst or A17 circuit have demonstrated that single types can possess specific morphological and functional adaptations to convey a particular function in one or a small number of inner retinal circuits. However, the interconnected and often stereotypical network formed by different types of amacrine cells across the inner plexiform layer prompts that they should be also involved in more general computations. In line with this notion, different recent studies systematically analysing inner retinal signalling at a population level provide evidence that general functions of the ensemble of amacrine cells across types are critical for establishing universal principles of retinal computation like parallel processing or motion anticipation. Combining recent advances in the development of indicators for imaging inhibition with large-scale morphological and genetic classifications will help to further our understanding of how single amacrine cell circuits act together to help decompose the visual scene into parallel information channels. In this review, we aim to summarise the current state-of-the-art in our understanding of how general features of amacrine cell inhibition lead to general features of computation.
视觉处理始于视网膜。在仅有两个突触层内,大量的平行信息通道涌现,每个通道都编码了一个高度处理过的特征,如边缘或运动方向。这种功能多样性很大程度上产生于内丛状层,其中抑制性无长突细胞调节双极细胞和节细胞的兴奋性信号。研究单个无长突细胞回路,如星爆或 A17 回路的研究表明,单一类型的无长突细胞可以具有特定的形态和功能适应性,以在一个或少数几个内视网膜回路中传递特定的功能。然而,内丛状层中不同类型的无长突细胞形成的相互连接且通常刻板的网络表明,它们也应该参与更一般的计算。与这一观点一致,最近的不同研究系统地分析了群体水平的内视网膜信号,为普遍存在的无长突细胞集合的整体功能对于建立视网膜计算的普遍原则(如并行处理或运动预测)提供了证据。结合用于成像抑制的指示剂在大规模形态和遗传分类方面的最新进展,将有助于进一步了解单个无长突细胞回路如何共同作用,以帮助将视觉场景分解为平行的信息通道。在这篇综述中,我们旨在总结目前对无长突细胞抑制的一般特征如何导致计算的一般特征的理解。