Suppr超能文献

使用基于几何知识的方法预测质子治疗颅底肿瘤的患者特异性剂量学益处。

Predicting Patient-specific Dosimetric Benefits of Proton Therapy for Skull-base Tumors Using a Geometric Knowledge-based Method.

作者信息

Hall David C, Trofimov Alexei V, Winey Brian A, Liebsch Norbert J, Paganetti Harald

机构信息

Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.

出版信息

Int J Radiat Oncol Biol Phys. 2017 Apr 1;97(5):1087-1094. doi: 10.1016/j.ijrobp.2017.01.236. Epub 2017 Feb 14.

Abstract

PURPOSE

To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials.

METHODS AND MATERIALS

Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-target in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose-volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan.

RESULTS

The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%).

CONCLUSIONS

We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for treatment planning are unavailable.

摘要

目的

仅基于靶区相对于危及器官(OAR)的几何布局,预测质子束治疗(PBT)可实现的危及器官剂量水平。与替代疗法进行比较,可预测PBT为特定患者带来的益处。这可以使没有质子治疗能力的医院的医生做出更明智的转诊决定,或在基于模型的临床试验中帮助患者选择。

方法和材料

由于颅底肿瘤的几何复杂性和附近众多的危及器官,选择颅底肿瘤来测试该方法。通过利用现有PBT计划中剂量与到靶区距离之间的相关性,针对6种类型的危及器官独立训练模型:脑干、耳蜗、视交叉、视神经、腮腺和脊髓。一旦训练完成,模型可以估计新患者危及器官结构的可行剂量体积直方图和广义等效均匀剂量(gEUD)。使用20名患者对模型进行训练,并使用另外21名患者进行验证。通过将预测的gEUD与实际PBT计划的gEUD进行比较来实现验证。

结果

预测的gEUD与计划的gEUD吻合良好。考虑所有危及器官,预测误差为+1.4±5.1 Gy(平均值±标准差),皮尔逊相关系数为93%。通过与调强光子治疗计划进行比较,该模型可以判断一个危及器官结构是否会受益,灵敏度为93%(95%置信区间:87%-97%),特异性为63%(95%置信区间:38%-84%)。

结论

我们训练并验证了能够快速、准确地预测PBT对颅底肿瘤特定患者益处的模型。可以为其他肿瘤部位开发类似的模型。当需要估计PBT的可行益处但缺乏治疗计划所需经验和/或资源时,此类模型将很有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验