Peryshkov Dmitry V, Strauss Steven H
Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States.
Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States.
Inorg Chem. 2017 Apr 3;56(7):4072-4083. doi: 10.1021/acs.inorgchem.7b00051. Epub 2017 Mar 23.
The single-crystal X-ray structures, thermogravimetric analyses, and/or FTIR spectra of a series of salts of the BF anion and homoleptic Ag(L) cations are reported (L = CHCl, n = 2; L = PhCH, n = 3; L = CHCN; n = 2-4; L = CO, n = 1, 2). The superweak-anion nature of BF (Y) was demonstrated by the rapid reaction of microcrystalline Ag(Y) with 1 atm of CO to form a nonclassical silver(I) carbonyl compound with an FTIR ν(CO) band at 2198 cm (and with the proposed formula [Ag(CO)][Y]). In contrast, microcrystalline Ag(BCl) did not exhibit ν(CO) bands and therefore did not form Ag(CO) species, even after 32 h under 24 atm of CO. When Ag(Y) was treated with carbon monoxide pressures higher than 1 atm, a new ν(CO) band at 2190 cm appeared, which is characteristic of a Ag(CO) dicarbonyl cation. Both Ag(CHCN)(Y) and Ag(CHCN)(Y) rapidly lost coordinated CHCN at 25 °C to form Ag(CHCN)(Y), which formed solvent-free Ag(Y) only after heating above 100 °C. Similarly, Ag(PhCH)(Y) rapidly lost coordinated PhCH at 25 °C to form Ag(PhCH)(Y), which formed Ag(Y) after heating above 150 °C, and Ag(CHCl)(Y) rapidly lost three of the four coordinated CHCl ligands between 25 and 100 °C and formed Ag(Y) when it was heated above 200 °C. Solvent-free Ag(Y) was stable until it was heated above 380 °C. The rapid evaporative loss of coordinated ligands at 25 °C from nonporous crystalline solids requires equally rapid structural reorganization of the lattice and is one of three manifestations of the structural compliance of the Y anion reported in this work. The second, more quantitative, manifestation is that Ag bond-valence sums for Ag(CHCN)(Y) are virtually constant, 1.20 ± 0.03, for n = 8, 5, 4, because the Y anion precisely compensated for the lost CHCN ligands by readily forming the necessary number of weak Ag-F(B) bonds. The third, and most exceptional, manifestation is that the idealized structural reorganization accompanying the conceptual transformations Ag(CHCN)(Y) → Ag(CHCN)(Y) → Ag(CHCN)(Y) involve close-packed layers of Y anions that sandwich the Ag(CHCN) complexes splitting into staggered flat ribbons of interconnected (Y) triangles that surround the Ag(CHCN) complexes on four sides, conceptually re-forming close-packed layers of anions that sandwich the Ag(CHCN) complexes. The interconnected (Y) triangle lattice of anions in Ag(CHCN)(Y) may be the first example of this structure type.
报道了一系列BF阴离子与均配型Ag(L)阳离子(L = CHCl,n = 2;L = PhCH,n = 3;L = CHCN;n = 2 - 4;L = CO,n = 1,2)形成的盐的单晶X射线结构、热重分析和/或傅里叶变换红外光谱。通过微晶Ag(Y)与1个大气压的CO快速反应形成一种非经典的银(I)羰基化合物,其傅里叶变换红外光谱中ν(CO)带位于2198 cm(推测分子式为[Ag(CO)][Y]),证明了BF (Y)的超弱阴离子性质。相比之下,微晶Ag(BCl)即使在24个大气压的CO下处理32小时后,也未出现ν(CO)带,因此未形成Ag(CO)物种。当用高于1个大气压的一氧化碳处理Ag(Y)时,出现了一个位于2190 cm的新ν(CO)带,这是Ag(CO)二羰基阳离子的特征。Ag(CHCN)(Y)和Ag(CHCN)(Y)在25℃时都会迅速失去配位的CHCN形成Ag(CHCN)(Y),只有在加热到100℃以上才会形成无溶剂的Ag(Y)。同样,Ag(PhCH)(Y)在25℃时会迅速失去配位的PhCH形成Ag(PhCH)(Y),加热到150℃以上会形成Ag(Y),而Ag(CHCl)(Y)在25℃至100℃之间会迅速失去四个配位的CHCl配体中的三个,加热到200℃以上会形成Ag(Y)。无溶剂的Ag(Y)在加热到380℃以上之前是稳定的。在25℃时从无孔晶体固体中快速蒸发失去配位配体需要晶格同样快速的结构重组,这是本工作中报道的Y阴离子结构顺应性的三种表现之一。第二种更定量的表现是,对于n = 8、5、4,Ag(CHCN)(Y)的Ag键价和实际上是恒定的,为1.20 ± 0.03,因为Y阴离子通过容易形成必要数量的弱Ag - F(B)键精确地补偿了失去的CHCN配体。第三种也是最特殊的表现是,伴随概念转变Ag(CHCN)(Y) → Ag(CHCN)(Y) → Ag(CHCN)(Y)的理想化结构重组涉及Y阴离子的密堆积层夹着Ag(CHCN)配合物,分裂成围绕Ag(CHCN)配合物四周的相互连接的(Y)三角形的交错扁平带,从概念上重新形成夹着Ag(CHCN)配合物的阴离子密堆积层。Ag(CHCN)(Y)中阴离子的相互连接的(Y)三角形晶格可能是这种结构类型的第一个例子。