Suppr超能文献

记忆在突触整合模型中的兴衰。

The rise and fall of memory in a model of synaptic integration.

机构信息

Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK.

出版信息

Neural Comput. 2012 Oct;24(10):2604-54. doi: 10.1162/NECO_a_00335. Epub 2012 Jun 26.

Abstract

Plasticity-inducing stimuli must typically be presented many times before synaptic plasticity is expressed, perhaps because induction signals gradually accumulate before overt strength changes occur. We consider memory dynamics in a mathematical model with synapses that integrate plasticity induction signals before expressing plasticity. We find that the memory trace initially rises before reaching a maximum and then falling. The memory signal dissociates into separate oblivescence and reminiscence components, with reminiscence initially dominating recall. In radical contrast, related but nonintegrative models exhibit only a highly problematic oblivescence. Synaptic integration mechanisms possess natural timescales, depending on the statistics of the induction signals. Together with neuromodulation, these timescales may therefore also begin to provide a natural account of the well-known spacing effect in the transition to late-phase plasticity. Finally, we propose experiments that could distinguish between integrative and nonintegrative synapses. Such experiments should further elucidate the synaptic signal processing mechanisms postulated by our model.

摘要

在突触可塑性表达之前,通常必须多次呈现诱导可塑性的刺激,这也许是因为在明显的强度变化发生之前,诱导信号逐渐积累。我们在一个数学模型中考虑记忆动力学,该模型中的突触在表达可塑性之前整合可塑性诱导信号。我们发现,记忆痕迹最初上升,然后达到最大值再下降。记忆信号分离成单独的遗忘和回忆成分,回忆最初占主导地位。与此形成鲜明对比的是,相关但非整合模型仅表现出高度有问题的遗忘。突触整合机制具有自然的时间尺度,这取决于诱导信号的统计特性。因此,与神经调制一起,这些时间尺度也可能开始为众所周知的长时程增强(LTP)过渡中的间隔效应提供自然解释。最后,我们提出了可以区分整合和非整合突触的实验。这些实验应该进一步阐明我们模型中假设的突触信号处理机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验