Suppr超能文献

稀疏编码对简单和复杂突触可塑性模型中记忆寿命的影响。

The Impact of Sparse Coding on Memory Lifetimes in Simple and Complex Models of Synaptic Plasticity.

机构信息

Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.

出版信息

Biol Cybern. 2022 Jun;116(3):327-362. doi: 10.1007/s00422-022-00923-y. Epub 2022 Mar 14.

Abstract

Models of associative memory with discrete state synapses learn new memories by forgetting old ones. In the simplest models, memories are forgotten exponentially quickly. Sparse population coding ameliorates this problem, as do complex models of synaptic plasticity that posit internal synaptic states, giving rise to synaptic metaplasticity. We examine memory lifetimes in both simple and complex models of synaptic plasticity with sparse coding. We consider our own integrative, filter-based model of synaptic plasticity, and examine the cascade and serial synapse models for comparison. We explore memory lifetimes at both the single-neuron and the population level, allowing for spontaneous activity. Memory lifetimes are defined using either a signal-to-noise ratio (SNR) approach or a first passage time (FPT) method, although we use the latter only for simple models at the single-neuron level. All studied models exhibit a decrease in the optimal single-neuron SNR memory lifetime, optimised with respect to sparseness, as the probability of synaptic updates decreases or, equivalently, as synaptic complexity increases. This holds regardless of spontaneous activity levels. In contrast, at the population level, even a low but nonzero level of spontaneous activity is critical in facilitating an increase in optimal SNR memory lifetimes with increasing synaptic complexity, but only in filter and serial models. However, SNR memory lifetimes are valid only in an asymptotic regime in which a mean field approximation is valid. By considering FPT memory lifetimes, we find that this asymptotic regime is not satisfied for very sparse coding, violating the conditions for the optimisation of single-perceptron SNR memory lifetimes with respect to sparseness. Similar violations are also expected for complex models of synaptic plasticity.

摘要

具有离散状态突触的联想记忆模型通过遗忘旧记忆来学习新记忆。在最简单的模型中,记忆会迅速指数级地遗忘。稀疏群体编码改善了这个问题,复杂的突触可塑性模型也提出了内部突触状态,从而产生了突触超可塑性。我们在具有稀疏编码的突触可塑性的简单和复杂模型中检查记忆寿命。我们考虑我们自己的综合、基于滤波器的突触可塑性模型,并研究级联和串联突触模型进行比较。我们在单个神经元和群体水平上探索记忆寿命,允许自发活动。记忆寿命使用信噪比(SNR)方法或首次通过时间(FPT)方法定义,尽管我们仅在单个神经元水平的简单模型中使用后者。所有研究的模型都表现出最佳单神经元 SNR 记忆寿命随突触更新概率降低或突触复杂度增加而减小,这与自发活动水平无关。相反,在群体水平上,即使是低但非零水平的自发活动对于增加最佳 SNR 记忆寿命与增加突触复杂度至关重要,但仅在滤波器和串联模型中。然而,SNR 记忆寿命仅在有效场近似有效的渐近区域内有效。通过考虑 FPT 记忆寿命,我们发现这个渐近区域对于非常稀疏的编码不成立,违反了单感知器 SNR 记忆寿命相对于稀疏度进行优化的条件。复杂的突触可塑性模型也可能存在类似的违反情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaae/9170679/bad799b08c49/422_2022_923_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验