Suppr超能文献

颈部体内动态屈伸过程中颈椎间盘变形的范围

Ranges of Cervical Intervertebral Disc Deformation During an In Vivo Dynamic Flexion-Extension of the Neck.

作者信息

Yu Yan, Mao Haiqing, Li Jing-Sheng, Tsai Tsung-Yuan, Cheng Liming, Wood Kirkham B, Li Guoan, Cha Thomas D

机构信息

Department of Spine Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 2000065, China;Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114.

Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.

出版信息

J Biomech Eng. 2017 Jun 1;139(6):0645011-7. doi: 10.1115/1.4036311.

Abstract

While abnormal loading is widely believed to cause cervical spine disc diseases, in vivo cervical disc deformation during dynamic neck motion has not been well delineated. This study investigated the range of cervical disc deformation during an in vivo functional flexion-extension of the neck. Ten asymptomatic human subjects were tested using a combined dual fluoroscopic imaging system (DFIS) and magnetic resonance imaging (MRI)-based three-dimensional (3D) modeling technique. Overall disc deformation was determined using the changes of the space geometry between upper and lower endplates of each intervertebral segment (C3/4, C4/5, C5/6, and C6/7). Five points (anterior, center, posterior, left, and right) of each disc were analyzed to examine the disc deformation distributions. The data indicated that between the functional maximum flexion and extension of the neck, the anterior points of the discs experienced large changes of distraction/compression deformation and shear deformation. The higher level discs experienced higher ranges of disc deformation. No significant difference was found in deformation ranges at posterior points of all the discs. The data indicated that the range of disc deformation is disc level dependent and the anterior region experienced larger changes of deformation than the center and posterior regions, except for the C6/7 disc. The data obtained from this study could serve as baseline knowledge for the understanding of the cervical spine disc biomechanics and for investigation of the biomechanical etiology of disc diseases. These data could also provide insights for development of motion preservation surgeries for cervical spine.

摘要

虽然人们普遍认为异常负荷会导致颈椎间盘疾病,但动态颈部运动过程中颈椎间盘的体内变形情况尚未得到很好的描述。本研究调查了颈部体内功能性屈伸过程中颈椎间盘的变形范围。使用组合双荧光透视成像系统(DFIS)和基于磁共振成像(MRI)的三维(3D)建模技术对10名无症状人体受试者进行了测试。通过每个椎间节段(C3/4、C4/5、C5/6和C6/7)上下终板之间空间几何形状的变化来确定椎间盘的整体变形。分析每个椎间盘的五个点(前、中、后、左和右)以检查椎间盘变形分布。数据表明,在颈部功能性最大屈伸之间,椎间盘的前点经历了较大的牵张/压缩变形和剪切变形变化。较高节段的椎间盘经历了更高的变形范围。所有椎间盘后点的变形范围未发现显著差异。数据表明,椎间盘变形范围取决于椎间盘节段水平,除C6/7椎间盘外,前部区域的变形变化比中部和后部区域更大。本研究获得的数据可作为了解颈椎间盘生物力学以及研究椎间盘疾病生物力学病因的基线知识。这些数据还可为颈椎运动保留手术的发展提供见解。

相似文献

3
Cervical disc deformation during flexion-extension in asymptomatic controls and single-level arthrodesis patients.
J Orthop Res. 2013 Dec;31(12):1881-9. doi: 10.1002/jor.22437. Epub 2013 Jul 17.
4
Dimensional changes of the neuroforamina in subaxial cervical spine during in vivo dynamic flexion-extension.
Spine J. 2016 Apr;16(4):540-6. doi: 10.1016/j.spinee.2015.11.052. Epub 2015 Dec 8.
8
Are the standard parameters of cervical spine alignment and range of motion related to age, sex, and cervical disc degeneration?
J Neurosurg Spine. 2015 Sep;23(3):274-9. doi: 10.3171/2015.1.SPINE14489. Epub 2015 Jun 19.
9
Effects of Cervical Extension on Deformation of Intervertebral Disk and Migration of Nucleus Pulposus.
PM R. 2017 Apr;9(4):329-338. doi: 10.1016/j.pmrj.2016.08.027. Epub 2016 Sep 6.

引用本文的文献

1
2
Neurological examination for cervical radiculopathy: a scoping review.
BMC Musculoskelet Disord. 2025 Apr 5;26(1):334. doi: 10.1186/s12891-025-08560-9.
3
Advancements in Imaging Techniques for Early Diagnosis and Management of Axial Spondyloarthritis.
Curr Rheumatol Rep. 2024 Dec 12;27(1):7. doi: 10.1007/s11926-024-01172-7.
4
In vivo cervical vertebrae kinematic studies based on dual fluoroscopic imaging system measurement: A narrative review.
Heliyon. 2024 May 8;10(10):e30904. doi: 10.1016/j.heliyon.2024.e30904. eCollection 2024 May 30.
8
Ligament deformation patterns of the craniocervical junction during head axial rotation tracked by biplane fluoroscopes.
Clin Biomech (Bristol). 2021 Aug;88:105442. doi: 10.1016/j.clinbiomech.2021.105442. Epub 2021 Jul 29.
9
In vivo primary and coupled segmental motions of the healthy female head-neck complex during dynamic head axial rotation.
J Biomech. 2021 Jun 23;123:110513. doi: 10.1016/j.jbiomech.2021.110513. Epub 2021 May 11.
10
In vivo intervertebral kinematics and disc deformations of the human cervical spine during walking.
Med Eng Phys. 2021 Jan;87:63-72. doi: 10.1016/j.medengphy.2020.11.010. Epub 2020 Nov 25.

本文引用的文献

1
Does design matter? Cervical disc replacements under review.
Neurosurg Rev. 2018 Apr;41(2):399-407. doi: 10.1007/s10143-016-0765-0. Epub 2016 Jul 27.
4
Cervical Spine Disc Deformation During In Vivo Three-Dimensional Head Movements.
Ann Biomed Eng. 2016 May;44(5):1598-612. doi: 10.1007/s10439-015-1424-2. Epub 2015 Aug 14.
5
Three-dimensional intervertebral kinematics in the healthy young adult cervical spine during dynamic functional loading.
J Biomech. 2015 May 1;48(7):1286-93. doi: 10.1016/j.jbiomech.2015.02.049. Epub 2015 Mar 14.
6
Bootstrap prediction bands for cervical spine intervertebral kinematics during in vivo three-dimensional head movements.
J Biomech. 2015 May 1;48(7):1270-6. doi: 10.1016/j.jbiomech.2015.02.054. Epub 2015 Mar 12.
7
Finite element investigation of the intervertebral disc behaviour.
Comput Methods Biomech Biomed Engin. 2014;17 Suppl 1:58-9. doi: 10.1080/10255842.2014.931113.
8
Analysis of intervertebral disc-related genes.
Genet Mol Res. 2014 Mar 24;13(1):2032-8. doi: 10.4238/2014.March.24.7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验