Hadži San, Garcia-Pino Abel, Haesaerts Sarah, Jurenas Dukas, Gerdes Kenn, Lah Jurij, Loris Remy
Structural Biology Brussels, Department of Biotechnology, Vrije Universiteit Brussel, B-1050 Brussel, Belgium.
Molecular Recognition Unit, Center for Structural Biology, Vlaams Instituut voor Biotechnologie, B-1050 Brussel, Belgium.
Nucleic Acids Res. 2017 May 5;45(8):4972-4983. doi: 10.1093/nar/gkx138.
Toxin-antitoxin (TA) modules are small operons involved in bacterial stress response and persistence. higBA operons form a family of TA modules with an inverted gene organization and a toxin belonging to the RelE/ParE superfamily. Here, we present the crystal structures of chromosomally encoded Vibrio cholerae antitoxin (VcHigA2), toxin (VcHigB2) and their complex, which show significant differences in structure and mechanisms of function compared to the higBA module from plasmid Rts1, the defining member of the family. The VcHigB2 is more closely related to Escherichia coli RelE both in terms of overall structure and the organization of its active site. VcHigB2 is neutralized by VcHigA2, a modular protein with an N-terminal intrinsically disordered toxin-neutralizing segment followed by a C-terminal helix-turn-helix dimerization and DNA binding domain. VcHigA2 binds VcHigB2 with picomolar affinity, which is mainly a consequence of entropically favorable de-solvation of a large hydrophobic binding interface and enthalpically favorable folding of the N-terminal domain into an α-helix followed by a β-strand. This interaction displaces helix α3 of VcHigB2 and at the same time induces a one-residue shift in the register of β-strand β3, thereby flipping the catalytically important Arg64 out of the active site.
毒素-抗毒素(TA)模块是参与细菌应激反应和持留性的小操纵子。higBA操纵子构成了一个TA模块家族,其基因组织呈反向排列,且毒素属于RelE/ParE超家族。在此,我们展示了染色体编码的霍乱弧菌抗毒素(VcHigA2)、毒素(VcHigB2)及其复合物的晶体结构,与该家族的典型成员——质粒Rts1上的higBA模块相比,它们在结构和功能机制上存在显著差异。VcHigB2在整体结构及其活性位点的组织方面与大肠杆菌RelE更为相似。VcHigB2被VcHigA2中和;VcHigA2是一种模块化蛋白,其N端有一个内在无序的毒素中和片段,随后是一个C端螺旋-转角-螺旋二聚化和DNA结合结构域。VcHigA2以皮摩尔亲和力结合VcHigB2,这主要是由于一个大的疏水结合界面在熵上有利于去溶剂化,以及N端结构域在焓上有利于折叠成一个α螺旋,随后是一条β链。这种相互作用取代了VcHigB2的α3螺旋,同时在β链β3的序列中诱导了一个单残基移位,从而将具有催化重要性的精氨酸64翻转出活性位点。