Möllers K B, Mikkelsen H, Simonsen T I, Cannella D, Johansen K S, Bjerrum M J, Felby C
Department of Geoscience and Natural Resources, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark.
Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
Carbohydr Res. 2017 Aug 7;448:182-186. doi: 10.1016/j.carres.2017.03.013. Epub 2017 Mar 18.
Light-driven activation of lytic polysaccharide monooxygenases (LPMOs) has been attributed to the transfer of high redox potential electrons from excited photopigments to the enzyme. However, due to the formation of reactive oxygen species (ROS) in such a system, not only electrons from the pigments but also ROS could be part of the enzyme mechanism. This work investigates the role of ROS in the oxidation of phosphoric acid swollen cellulose (PASC) by a light-driven LPMO system. Our results clearly show that the addition of superoxide dismutase or catalase to remove ROS did not attenuate the capacity of the light-driven LPMO system to oxidize PASC, as measured by formation of oxidized oligosaccharides. We conclude that ROS are not part of the light-driven LPMO activation; hence, transfer of high redox potential electrons from the excited photopigment to the LPMO remains the most likely mechanism under the conditions tested in this study.
光驱动的裂解多糖单加氧酶(LPMO)的激活被认为是由于高氧化还原电位的电子从激发态光色素转移到了酶上。然而,由于在这样一个系统中会形成活性氧(ROS),不仅色素中的电子,而且ROS都可能参与酶的作用机制。这项工作研究了ROS在光驱动的LPMO系统氧化磷酸膨胀纤维素(PASC)过程中的作用。我们的结果清楚地表明,添加超氧化物歧化酶或过氧化氢酶以去除ROS,并不会减弱光驱动的LPMO系统氧化PASC的能力,这一能力通过氧化寡糖的形成来衡量。我们得出结论,ROS不是光驱动的LPMO激活的一部分;因此,在本研究测试的条件下,高氧化还原电位的电子从激发态光色素转移到LPMO仍然是最可能的机制。