INRAE, Aix Marseille University, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway.
Essays Biochem. 2023 Mar 18;67(3):575-584. doi: 10.1042/EBC20220250.
The discovery of oxidative cleavage of glycosidic bonds by enzymes currently known as lytic polysaccharide monooxygenases (LPMOs) has profoundly changed our current understanding of enzymatic processes underlying the conversion of polysaccharides in the biosphere. LPMOs are truly unique enzymes, harboring a single copper atom in a solvent-exposed active site, allowing them to oxidize C-H bonds at the C1 and/or C4 carbon of glycosidic linkages found in recalcitrant, often crystalline polysaccharides such as cellulose and chitin. To catalyze this challenging reaction, LPMOs harness and control a powerful oxidative reaction that involves Fenton-like chemistry. In this essay, we first draw a brief portrait of the LPMO field, notably explaining the shift from the monooxygenase paradigm (i.e., using O2 as cosubstrate) to that of a peroxygenase (i.e., using H2O2). Then, we briefly review current understanding of how LPMOs generate and control a hydroxyl radical (HO•) generated through Cu(I)-catalyzed H2O2 homolysis, and how this radical is used to create the proposed Cu(II)-oxyl species, abstracting hydrogen atom of the C-H bond. We also point at the complexity of analyzing redox reactions involving reactive oxygen species and address potential deficiencies in the interpretation of existing LPMO data. Being the first copper enzymes shown to enable site-specific Fenton-like chemistry, and maybe not the only ones, LPMOs may serve as a blueprint for future research on monocopper peroxygenases.
酶促糖苷键氧化裂解的发现,目前被称为裂解多糖单加氧酶(LPMOs),这极大地改变了我们目前对生物圈内多糖转化过程中酶促作用的理解。LPMOs 是真正独特的酶,在溶剂暴露的活性位点中含有单个铜原子,使其能够氧化糖苷键中 C1 和/或 C4 碳上的 C-H 键,这些糖苷键存在于难以转化的、通常为结晶态的多糖中,如纤维素和壳聚糖。为了催化这种具有挑战性的反应,LPMOs 利用和控制一种强大的氧化反应,涉及芬顿样化学。在本文中,我们首先简要介绍了 LPMO 领域,特别解释了从单加氧酶范式(即使用 O2 作为共底物)向过氧化物酶范式(即使用 H2O2)的转变。然后,我们简要回顾了目前对 LPMO 如何产生和控制通过 Cu(I)-催化 H2O2 均裂产生的羟基自由基(HO•)的理解,以及该自由基如何用于生成提议的 Cu(II)-氧物种,从而提取 C-H 键上的氢原子。我们还指出了分析涉及活性氧物种的氧化还原反应的复杂性,并解决了对现有 LPMO 数据解释的潜在缺陷。作为首次被证明能够实现位点特异性芬顿样化学的铜酶,也许不是唯一的铜酶,LPMOs 可能成为未来对单铜过氧化物酶研究的蓝图。