Suppr超能文献

重新审视电子供体在溶细胞多糖单加氧酶生物化学中的作用。

Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry.

机构信息

Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.

出版信息

Essays Biochem. 2023 Apr 18;67(3):585-595. doi: 10.1042/EBC20220164.

Abstract

The plant cell wall is rich in carbohydrates and many fungi and bacteria have evolved to take advantage of this carbon source. These carbohydrates are largely locked away in polysaccharides and so these organisms deploy a range of enzymes that can liberate individual sugars from these challenging substrates. Glycoside hydrolases (GHs) are the enzymes that are largely responsible for bringing about this sugar release; however, 12 years ago, a family of enzymes known as lytic polysaccharide monooxygenases (LPMOs) were also shown to be of key importance in this process. LPMOs are copper-dependent oxidative enzymes that can introduce chain breaks within polysaccharide chains. Initial work demonstrated that they could activate O2 to attack the substrate through a reaction that most likely required multiple electrons to be delivered to the enzyme. More recently, it has emerged that LPMO kinetics are significantly improved if H2O2 is supplied to the enzyme as a cosubstrate instead of O2. Only a single electron is required to activate an LPMO and H2O2 cosubstrate and the enzyme has been shown to catalyse multiple turnovers following the initial one-electron reduction of the copper, which is not possible if O2 is used. This has led to further studies of the roles of the electron donor in LPMO biochemistry, and this review aims to highlight recent findings in this area and consider how ongoing research could impact our understanding of the interplay between redox processes in nature.

摘要

植物细胞壁富含碳水化合物,许多真菌和细菌已经进化到能够利用这种碳源。这些碳水化合物在很大程度上被锁定在多糖中,因此这些生物体利用了一系列能够从这些具有挑战性的基质中释放单个糖的酶。糖苷水解酶(GHs)是主要负责释放这些糖的酶;然而,12 年前,人们还发现了一类被称为溶菌多糖单加氧酶(LPMOs)的酶,它们在这个过程中也具有关键作用。LPMOs 是依赖铜的氧化酶,可以在多糖链中引入链断裂。最初的研究表明,它们可以通过一种反应来激活 O2 攻击底物,这种反应可能需要多个电子被输送到酶上。最近,人们发现,如果将 H2O2 作为共底物而不是 O2 供应给酶,LPMO 的动力学性能会显著提高。激活一个 LPMO 只需要一个电子,而 H2O2 共底物可以使酶在铜的初始单电子还原后进行多次周转,而如果使用 O2 则不可能进行多次周转。这导致了对 LPMO 生物化学中电子供体作用的进一步研究,本综述旨在强调该领域的最新发现,并考虑正在进行的研究如何影响我们对自然界中氧化还原过程相互作用的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/614b/10154616/0d021e05e3d1/ebc-67-ebc20220164-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验