Garriga Miguel, Romero-Bravo Sebastián, Estrada Félix, Escobar Alejandro, Matus Iván A, Del Pozo Alejandro, Astudillo Cesar A, Lobos Gustavo A
Facultad de Ciencias Agrarias, Plant Breeding and Phenomic Center, PIEI Adaptación de la Agricultura al Cambio Climático, Universidad de Talca Talca, Chile.
CRI-Quilamapu, Instituto de Investigaciones Agropecuarias Chillán, Chile.
Front Plant Sci. 2017 Mar 9;8:280. doi: 10.3389/fpls.2017.00280. eCollection 2017.
Phenotyping, via remote and proximal sensing techniques, of the agronomic and physiological traits associated with yield potential and drought adaptation could contribute to improvements in breeding programs. In the present study, 384 genotypes of wheat ( L.) were tested under fully irrigated (FI) and water stress (WS) conditions. The following traits were evaluated and assessed via spectral reflectance: Grain yield (GY), spikes per square meter (SM2), kernels per spike (KPS), thousand-kernel weight (TKW), chlorophyll content (SPAD), stem water soluble carbohydrate concentration and content (WSC and WSCC, respectively), carbon isotope discrimination (ΔC), and leaf area index (LAI). The performances of spectral reflectance indices (SRIs), four regression algorithms (PCR, PLSR, ridge regression RR, and SVR), and three classification methods (PCA-LDA, PLS-DA, and NN) were evaluated for the prediction of each trait. For the classification approaches, two classes were established for each trait: The lower 80% of the trait variability range (Class 1) and the remaining 20% (Class 2 or elite genotypes). Both the SRIs and regression methods performed better when data from FI and WS were combined. The traits that were best estimated by SRIs and regression methods were GY and ΔC. For most traits and conditions, the estimations provided by RR and SVR were the same, or better than, those provided by the SRIs. PLS-DA showed the best performance among the categorical methods and, unlike the SRI and regression models, most traits were relatively well-classified within a specific hydric condition (FI or WS), proving that classification approach is an effective tool to be explored in future studies related to genotype selection.
通过遥感和近感技术对与产量潜力和干旱适应性相关的农艺和生理性状进行表型分析,有助于改进育种计划。在本研究中,对384个小麦基因型在充分灌溉(FI)和水分胁迫(WS)条件下进行了测试。通过光谱反射率对以下性状进行了评估:籽粒产量(GY)、每平方米穗数(SM2)、每穗粒数(KPS)、千粒重(TKW)、叶绿素含量(SPAD)、茎中水溶性碳水化合物浓度和含量(分别为WSC和WSCC)、碳同位素判别率(ΔC)和叶面积指数(LAI)。评估了光谱反射率指数(SRIs)、四种回归算法(主成分回归PCR、偏最小二乘回归PLSR、岭回归RR和支持向量回归SVR)以及三种分类方法(主成分分析-线性判别分析PCA-LDA、偏最小二乘判别分析PLS-DA和神经网络NN)对每个性状的预测性能。对于分类方法,为每个性状建立了两类:性状变异范围的下80%(第1类)和其余20%(第2类或优良基因型)。当将FI和WS的数据结合起来时,SRIs和回归方法的表现更好。SRIs和回归方法估计效果最好的性状是GY和ΔC。对于大多数性状和条件,RR和SVR提供的估计与SRIs相同或更好。PLS-DA在分类方法中表现最佳,与SRI和回归模型不同,大多数性状在特定水分条件(FI或WS)下能得到较好的分类,证明分类方法是未来与基因型选择相关研究中有待探索的有效工具。