Suppr超能文献

超薄氢氧化镍纳米片阵列接枝生物质衍生的蜂窝状多孔碳,作为超级电容器材料具有改善的电化学性能。

Ultrathin nickel hydroxide nanosheet arrays grafted biomass-derived honeycomb-like porous carbon with improved electrochemical performance as a supercapacitive material.

机构信息

Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.

出版信息

Sci Rep. 2017 Mar 24;7:45201. doi: 10.1038/srep45201.

Abstract

Three-dimensional hierarchical honeycomb-like activated porous carbon pillared ultrathin Ni(OH) nanosheets (Ni(OH) NSs@HAPC) for use as supercapacitor materials were facilely synthesized. With an aid of pine cone flowers as a biomass source, HAPC conducting scaffolds were prepared by the alkali treatment and pyrolysis methods under an inert gas atmosphere. Subsequently, the Ni(OH) NSs were synthesized evenly on the surface of HAPC via a solvothermal method. The resulting HAPC and Ni(OH) NSs@HAPC composite materials offered free pathways for effective diffusion of electrolyte ions and fast transportation of electrons when employed as an electrode material. The Ni(OH) NSs@HAPC composite electrode exhibited excellent electrochemical properties including a relatively high specific capacitance (C) value of ~ 916.4 F/g at 1 A/g with good cycling stability compared to the pristine HAPC and Ni(OH) NSs electrodes. Such bio-friendly derived carbon-based materials with transition metal hydroxide/oxide composite materials could be a promising approach for high-performance energy storage devices because of their advantageous properties of cost effectiveness and easy availability.

摘要

三维分层蜂窝状活性炭支撑的超薄 Ni(OH)纳米片 (Ni(OH) NSs@HAPC) 被简便地合成,用作超级电容器材料。在惰性气体氛围下,借助于松果作为生物质源,通过碱处理和热解方法制备了 HAPC 导电支架。随后,通过溶剂热法将 Ni(OH) NSs 均匀地合成在 HAPC 的表面上。当用作电极材料时,所得的 HAPC 和 Ni(OH) NSs@HAPC 复合材料为有效扩散电解质离子和快速传输电子提供了自由途径。与原始的 HAPC 和 Ni(OH) NSs 电极相比,Ni(OH) NSs@HAPC 复合电极表现出优异的电化学性能,包括在 1 A/g 时约为 916.4 F/g 的相对较高的比电容 (C) 值和良好的循环稳定性。由于具有成本效益和易于获得的优势特性,这种源自生物友好型的碳基材料与过渡金属氢氧化物/氧化物复合材料可能是高性能储能设备的有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b10e/5364545/400dfa6350bf/srep45201-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验