School of Chemical Engineering, University of Adelaide, Adelaide, SA, 5005, Australia.
Department of Chemistry and Biochemistry, Kent State University, Kent, USA.
Angew Chem Int Ed Engl. 2017 Jul 10;56(29):8539-8543. doi: 10.1002/anie.201701531. Epub 2017 Mar 24.
Engineering high-energy interfacial structures for high-performance electrocatalysis is achieved by chemical coupling of active CoO nanoclusters and high-index facet Mn O nano-octahedrons (hi-Mn O ). A thorough characterization, including synchrotron-based near edge X-ray absorption fine structure, reveals that strong interactions between both components promote the formation of high-energy interfacial Mn-O-Co species and high oxidation state CoO, from which electrons are drawn by Mn -O present in hi-Mn O . The CoO/hi-Mn O demonstrates an excellent catalytic performance over the conventional metal oxide-based electrocatalysts, which is reflected by 1.2 times higher oxygen evolution reaction (OER) activity than that of Ru/C and a comparable oxygen reduction reaction (ORR) activity to that of Pt/C as well as a better stability than that of Ru/C (95 % vs. 81 % retained OER activity) and Pt/C (92 % vs. 78 % retained ORR activity after 10 h running) in alkaline electrolyte.
通过将活性 CoO 纳米团簇和高指数晶面 MnO 纳米八面体(hi-MnO)进行化学偶联,实现了用于高性能电催化的高能界面结构工程。综合利用基于同步加速器的近边 X 射线吸收精细结构等多种技术进行的深入表征揭示,两种组分之间的强相互作用促进了高能界面 Mn-O-Co 物种和高氧化态 CoO 的形成,其中 hi-MnO 中的 Mn-O 从 CoO 中提取电子。CoO/hi-MnO 在传统金属氧化物基电催化剂上表现出优异的催化性能,其析氧反应(OER)活性比 Ru/C 高 1.2 倍,氧还原反应(ORR)活性与 Pt/C 相当,而且在碱性电解质中的稳定性也优于 Ru/C(95% vs. 81%保留的 OER 活性)和 Pt/C(92% vs. 78%保留的 ORR 活性,经过 10 小时运行后)。