Suppr超能文献

氧化锰作为氧还原和析氧反应催化剂的电化学行为洞察:单金属核壳结构Mn/MnO

Insights into the Electrochemical Behavior of Manganese Oxides as Catalysts for the Oxygen Reduction and Evolution Reactions: Monometallic Core-Shell Mn/Mn O.

作者信息

Pei Yu, Wilkinson David P, Gyenge Előd

机构信息

Department of Chemical and Biological Engineering, Clean Energy Research Centre, The University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada.

出版信息

Small. 2023 May;19(19):e2204585. doi: 10.1002/smll.202204585. Epub 2023 Feb 2.

Abstract

Overcoming the sluggish electrode kinetics of both oxygen reduction and evolution reactions (ORR/OER) with non-precious metal electrocatalysts will accelerate the development of rechargeable metal-air batteries and regenerative fuel cells. The authors investigated the electrochemical behavior and ORR/OER catalytic activity of core-porous shell Mn/Mn O nanoparticles in comparison with other manganese dioxides (β- and γ-MnO ), and benchmarked against Pt/C and Pt/C-IrO . Under reversible operation in O -saturated 5 M KOH at 22 °C, the early stage activity of core-shell Mn/Mn O shows two times higher ORR and OER current density compared to the other MnO structures at 0.32 and 1.62 V versus RHE, respectively. It is revealed that Mn(III) oxidation to Mn(IV) is the primary cause of Mn/Mn O activity loss during ORR/OER potential cycling. To address it, an electrochemical activation method using Co(II) is proposed. By incorporating Co(II) into MnO , new active sites are introduced and the content of Mn(II) is increased, which can stabilize the Mn(III) sites through comproportionation with Mn(IV). The Co-incorporated Mn/Mn O has superior activity and durability. Furthermore, it also surpassed the activity of Pt/C-IrO with similar durability. This study demonstrates that cost-effective ORR/OER catalysis is possible.

摘要

使用非贵金属电催化剂克服氧还原和析氧反应(ORR/OER)缓慢的电极动力学,将加速可充电金属空气电池和再生燃料电池的发展。作者研究了核-多孔壳层Mn/MnO纳米颗粒与其他二氧化锰(β-和γ-MnO)相比的电化学行为和ORR/OER催化活性,并以Pt/C和Pt/C-IrO为基准进行了比较。在22°C下于O2饱和的5 M KOH中进行可逆操作时,核壳Mn/MnO的早期活性在相对于RHE为0.32和1.62 V时,其ORR和OER电流密度分别比其他MnO结构高两倍。研究表明,在ORR/OER电位循环过程中,Mn(III)氧化为Mn(IV)是Mn/MnO活性损失的主要原因。为了解决这一问题,提出了一种使用Co(II)的电化学活化方法。通过将Co(II)掺入MnO中,引入了新的活性位点并增加了Mn(II)的含量,这可以通过与Mn(IV)的歧化反应来稳定Mn(III)位点。掺入Co的Mn/MnO具有优异的活性和耐久性。此外,它在耐久性相似的情况下也超过了Pt/C-IrO的活性。这项研究表明,具有成本效益的ORR/OER催化是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验