MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265 Brno, Czech Republic.
Nat Chem. 2017 Apr;9(4):303-309. doi: 10.1038/nchem.2664. Epub 2016 Nov 21.
Previous research has identified ribose aminooxazoline as a potential intermediate in the prebiotic synthesis of the pyrimidine nucleotides with remarkable properties. It crystallizes spontaneously from reaction mixtures, with an enhanced enantiomeric excess if initially enantioenriched, which suggests that reservoirs of this compound might have accumulated on the early Earth in an optically pure form. Ribose aminooxazoline can be converted efficiently into α-ribocytidine by way of 2,2'-anhydroribocytidine, although anomerization to β-ribocytidine by ultraviolet irradiation is extremely inefficient. Our previous work demonstrated the synthesis of pyrimidine β-ribonucleotides, but at the cost of ignoring ribose aminooxazoline, using arabinose aminooxazoline instead. Here we describe a long-sought route through ribose aminooxazoline to the pyrimidine β-ribonucleosides and their phosphate derivatives that involves an extraordinarily efficient photoanomerization of α-2-thioribocytidine. In addition to the canonical nucleosides, our synthesis accesses β-2-thioribouridine, a modified nucleoside found in transfer RNA that enables both faster and more-accurate nucleic acid template-copying chemistry.
先前的研究已经确定了核糖氨基恶唑啉是嘧啶核苷酸前体生物合成中的一种潜在中间体,具有显著的特性。它可以自发地从反应混合物中结晶出来,如果最初是对映体富集的,那么它的对映体过量会增加,这表明这种化合物的储库可能以纯光学形式在早期地球上积累。核糖氨基恶唑啉可以通过 2,2'-脱水核糖胞苷有效地转化为α-核糖胞苷,尽管通过紫外线照射异构化为β-核糖胞苷的效率极低。我们之前的工作证明了嘧啶β-核糖核苷酸的合成,但代价是忽略了核糖氨基恶唑啉,而是使用阿拉伯糖氨基恶唑啉。在这里,我们描述了一条经过长期探索的途径,通过核糖氨基恶唑啉合成嘧啶β-核糖核苷及其磷酸衍生物,其中涉及到α-2-硫代核糖胞苷的极其高效光异构化。除了典型的核苷外,我们的合成方法还可以获得β-2-硫代尿苷,这是一种在转移 RNA 中发现的修饰核苷,它能够使核酸模板复制化学更快、更准确。