Suppr超能文献

针对暴露错误分类概率不确定的病例对照研究的稳健贝叶斯敏感性分析。

Robust bayesian sensitivity analysis for case-control studies with uncertain exposure misclassification probabilities.

作者信息

Mak Timothy Shin Heng, Best Nicky, Rushton Lesley

出版信息

Int J Biostat. 2015 May;11(1):135-49. doi: 10.1515/ijb-2013-0044.

Abstract

Exposure misclassification in case-control studies leads to bias in odds ratio estimates. There has been considerable interest recently to account for misclassification in estimation so as to adjust for bias as well as more accurately quantify uncertainty. These methods require users to elicit suitable values or prior distributions for the misclassification probabilities. In the event where exposure misclassification is highly uncertain, these methods are of limited use, because the resulting posterior uncertainty intervals tend to be too wide to be informative. Posterior inference also becomes very dependent on the subjectively elicited prior distribution. In this paper, we propose an alternative "robust Bayesian" approach, where instead of eliciting prior distributions for the misclassification probabilities, a feasible region is given. The extrema of posterior inference within the region are sought using an inequality constrained optimization algorithm. This method enables sensitivity analyses to be conducted in a useful way as we do not need to restrict all of our unknown parameters to fixed values, but can instead consider ranges of values at a time.

摘要

病例对照研究中的暴露误分类会导致比值比估计出现偏差。最近,人们对在估计中考虑误分类以调整偏差并更准确地量化不确定性产生了浓厚兴趣。这些方法要求用户为误分类概率引出合适的值或先验分布。在暴露误分类高度不确定的情况下,这些方法的用途有限,因为所得的后验不确定性区间往往过宽而无法提供有用信息。后验推断也变得非常依赖主观引出的先验分布。在本文中,我们提出了一种替代的“稳健贝叶斯”方法,即不引出误分类概率的先验分布,而是给出一个可行区域。使用不等式约束优化算法在该区域内寻求后验推断的极值。这种方法能够以一种有用的方式进行敏感性分析,因为我们不需要将所有未知参数限制为固定值,而是可以一次考虑值的范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验