Suppr超能文献

一种用于语义图像分割的基于自上而下方式的深度卷积神经网络(DCNN)架构。

A top-down manner-based DCNN architecture for semantic image segmentation.

作者信息

Qiao Kai, Chen Jian, Wang Linyuan, Zeng Lei, Yan Bin

机构信息

National Digital Switching System Engineering and Technological Research Centre, Zhengzhou, China.

出版信息

PLoS One. 2017 Mar 24;12(3):e0174508. doi: 10.1371/journal.pone.0174508. eCollection 2017.

Abstract

Given their powerful feature representation for recognition, deep convolutional neural networks (DCNNs) have been driving rapid advances in high-level computer vision tasks. However, their performance in semantic image segmentation is still not satisfactory. Based on the analysis of visual mechanism, we conclude that DCNNs in a bottom-up manner are not enough, because semantic image segmentation task requires not only recognition but also visual attention capability. In the study, superpixels containing visual attention information are introduced in a top-down manner, and an extensible architecture is proposed to improve the segmentation results of current DCNN-based methods. We employ the current state-of-the-art fully convolutional network (FCN) and FCN with conditional random field (DeepLab-CRF) as baselines to validate our architecture. Experimental results of the PASCAL VOC segmentation task qualitatively show that coarse edges and error segmentation results are well improved. We also quantitatively obtain about 2%-3% intersection over union (IOU) accuracy improvement on the PASCAL VOC 2011 and 2012 test sets.

摘要

鉴于深度卷积神经网络(DCNN)在识别方面具有强大的特征表示能力,它们推动了高级计算机视觉任务的快速发展。然而,其在语义图像分割方面的性能仍不尽人意。基于对视觉机制的分析,我们得出结论,自下而上的DCNN方式是不够的,因为语义图像分割任务不仅需要识别能力,还需要视觉注意力能力。在本研究中,以自上而下的方式引入了包含视觉注意力信息的超像素,并提出了一种可扩展的架构,以改善当前基于DCNN方法的分割结果。我们采用当前最先进的全卷积网络(FCN)以及带有条件随机场的FCN(DeepLab-CRF)作为基线来验证我们的架构。PASCAL VOC分割任务的实验结果定性地表明,粗糙边缘和错误分割结果得到了很好的改善。我们还在PASCAL VOC 2011和2012测试集上定量地获得了约2%-3%的交并比(IOU)精度提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8d1/5365135/ea1b68389016/pone.0174508.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验