Suppr超能文献

深度密度可通过 Kinect 系统实现更好的语义分割效果。

Depth Density Achieves a Better Result for Semantic Segmentation with the Kinect System.

机构信息

College of Information and Electrical Engineering, Shenyang Agricultural University, Shenyang 110866, China.

Liaoning Engineering Research Center for Information Technology in Agriculture, Shenyang 110866, China.

出版信息

Sensors (Basel). 2020 Feb 3;20(3):812. doi: 10.3390/s20030812.

Abstract

Image segmentation is one of the most important methods for animal phenome research. Since the advent of deep learning, many researchers have looked at multilayer convolutional neural networks to solve the problems of image segmentation. A network simplifies the task of image segmentation with automatic feature extraction. Many networks struggle to output accurate details when dealing with pixel-level segmentation. In this paper, we propose a new concept: Depth density. Based on a depth image, produced by a Kinect system, we design a new function to calculate the depth density value of each pixel and bring this value back to the result of semantic segmentation for improving the accuracy. In the experiment, we choose Simmental cattle as the target of image segmentation and fully convolutional networks (FCN) as the verification networks. We proved that depth density can improve four metrics of semantic segmentation (pixel accuracy, mean accuracy, mean intersection over union, and frequency weight intersection over union) by 2.9%, 0.3%, 11.4%, and 5.02%, respectively. The result shows that depth information produced by Kinect can improve the accuracy of the semantic segmentation of FCN. This provides a new way of analyzing the phenotype information of animals.

摘要

图像分割是动物表型研究中最重要的方法之一。自从深度学习出现以来,许多研究人员已经开始研究多层卷积神经网络来解决图像分割问题。神经网络通过自动特征提取来简化图像分割任务。许多网络在处理像素级分割时,难以输出准确的细节。在本文中,我们提出了一个新概念:深度密度。基于 Kinect 系统生成的深度图像,我们设计了一个新的函数来计算每个像素的深度密度值,并将该值带回语义分割的结果中,以提高准确性。在实验中,我们选择西门塔尔牛作为图像分割的目标,并选择全卷积网络(FCN)作为验证网络。我们证明,深度密度可以分别提高语义分割的四个指标(像素准确率、平均准确率、平均交并比和频率权重交并比)2.9%、0.3%、11.4%和 5.02%。结果表明,Kinect 生成的深度信息可以提高 FCN 的语义分割准确性。这为分析动物表型信息提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/893c/7038701/4b5a08a12934/sensors-20-00812-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验