Institute of Cognitive Neuroscience, University College London, London, United Kingdom.
Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom.
Biol Psychiatry. 2017 Oct 1;82(7):532-539. doi: 10.1016/j.biopsych.2017.01.017. Epub 2017 Feb 8.
Serious and debilitating symptoms of anxiety are the most common mental health problem worldwide, accounting for around 5% of all adult years lived with disability in the developed world. Avoidance behavior-avoiding social situations for fear of embarrassment, for instance-is a core feature of such anxiety. However, as for many other psychiatric symptoms the biological mechanisms underlying avoidance remain unclear.
Reinforcement learning models provide formal and testable characterizations of the mechanisms of decision making; here, we examine avoidance in these terms. A total of 101 healthy participants and individuals with mood and anxiety disorders completed an approach-avoidance go/no-go task under stress induced by threat of unpredictable shock.
We show an increased reliance in the mood and anxiety group on a parameter of our reinforcement learning model that characterizes a prepotent (pavlovian) bias to withhold responding in the face of negative outcomes. This was particularly the case when the mood and anxiety group was under stress.
This formal description of avoidance within the reinforcement learning framework provides a new means of linking clinical symptoms with biophysically plausible models of neural circuitry and, as such, takes us closer to a mechanistic understanding of mood and anxiety disorders.
严重且使人虚弱的焦虑症状是全世界最常见的心理健康问题,在发达国家约占所有残疾成年人生存年限的 5%。回避行为——例如,因为害怕尴尬而避免社交场合——是这种焦虑的核心特征。然而,对于许多其他精神症状,回避的生物学机制仍不清楚。
强化学习模型为决策机制提供了正式和可检验的描述;在这里,我们从这些方面来研究回避。总共 101 名健康参与者和情绪及焦虑障碍患者在受到不可预测的冲击威胁的压力下完成了一个接近回避 Go/No-Go 任务。
我们发现,在情绪和焦虑组中,我们的强化学习模型的一个参数的依赖性增加,该参数描述了在面对负面结果时抑制反应的一种优势(巴甫洛夫)偏见。当情绪和焦虑组处于压力之下时,这种情况尤其如此。
在强化学习框架内对回避的这种正式描述提供了一种将临床症状与神经回路的生物物理上合理的模型联系起来的新方法,因此,使我们更接近对情绪和焦虑障碍的机制理解。