文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses.

作者信息

Dowling David J, Scott Evan A, Scheid Annette, Bergelson Ilana, Joshi Sweta, Pietrasanta Carlo, Brightman Spencer, Sanchez-Schmitz Guzman, Van Haren Simon D, Ninković Jana, Kats Dina, Guiducci Cristiana, de Titta Alexandre, Bonner Daniel K, Hirosue Sachiko, Swartz Melody A, Hubbell Jeffrey A, Levy Ofer

机构信息

Department of Medicine, Division of Infectious Diseases, Boston Children's Hospital, Boston, Mass; Harvard Medical School, Boston, Mass.

Department of Biomedical Engineering, Northwestern University, Evanston, Ill.

出版信息

J Allergy Clin Immunol. 2017 Nov;140(5):1339-1350. doi: 10.1016/j.jaci.2016.12.985. Epub 2017 Mar 23.


DOI:10.1016/j.jaci.2016.12.985
PMID:28343701
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5667586/
Abstract

BACKGROUND: Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. OBJECTIVE: Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. METHODS: Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist-encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow-derived DCs enabled benchmarking of the TLR8 agonist-encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25-loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. RESULTS: Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited T-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist-adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4 T-cell numbers. CONCLUSION: TLR8 agonist-encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/58bfea4ecd59/figs13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/a7b949fbef7f/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/55d6e975e24a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/34c792252776/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/e630ada2ac16/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/5048985cf16b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/164fb2695358/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/565b8b3a6687/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/13941088064b/figs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/1819fb775372/figs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/b4e75b147cd8/figs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/4a2e073dfcd6/figs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/10cb298fa1ae/figs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/4629de9d80a2/figs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/df956572fe9a/figs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/6765151eba3d/figs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/b60b43f0a181/figs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/a02709292289/figs10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/1eb278634291/figs11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/556aea645e34/figs12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/58bfea4ecd59/figs13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/a7b949fbef7f/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/55d6e975e24a/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/34c792252776/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/e630ada2ac16/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/5048985cf16b/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/164fb2695358/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/565b8b3a6687/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/13941088064b/figs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/1819fb775372/figs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/b4e75b147cd8/figs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/4a2e073dfcd6/figs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/10cb298fa1ae/figs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/4629de9d80a2/figs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/df956572fe9a/figs7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/6765151eba3d/figs8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/b60b43f0a181/figs9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/a02709292289/figs10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/1eb278634291/figs11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/556aea645e34/figs12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90fd/5667586/58bfea4ecd59/figs13.jpg

相似文献

[1]
Toll-like receptor 8 agonist nanoparticles mimic immunomodulating effects of the live BCG vaccine and enhance neonatal innate and adaptive immune responses.

J Allergy Clin Immunol. 2017-11

[2]
Imidazoquinoline Toll-like receptor 8 agonists activate human newborn monocytes and dendritic cells through adenosine-refractory and caspase-1-dependent pathways.

J Allergy Clin Immunol. 2012-4-21

[3]
The ultra-potent and selective TLR8 agonist VTX-294 activates human newborn and adult leukocytes.

PLoS One. 2013-3-4

[4]
The Imidazoquinoline Toll-Like Receptor-7/8 Agonist Hybrid-2 Potently Induces Cytokine Production by Human Newborn and Adult Leukocytes.

PLoS One. 2015-8-14

[5]
Evaluation of novel synthetic TLR7/8 agonists as vaccine adjuvants.

Vaccine. 2016-8-5

[6]
[Effect of neonatal BCG vaccination on phenotype and function of splenic dendritic cells of BALB/c mice].

Zhonghua Er Ke Za Zhi. 2008-10

[7]
Combined Toll-like receptor agonists synergistically increase production of inflammatory cytokines in human neonatal dendritic cells.

Hum Immunol. 2007-10

[8]
Microphysiologic Human Tissue Constructs Reproduce Autologous Age-Specific BCG and HBV Primary Immunization .

Front Immunol. 2018-11-20

[9]
Adult-like anti-mycobacterial T cell and in vivo dendritic cell responses following neonatal immunization with Ag85B-ESAT-6 in the IC31 adjuvant.

PLoS One. 2008

[10]
Toll-like receptor-mediated adjuvanticity and immunomodulation in dendritic cells: Implications for peptide vaccines.

Hum Vaccin. 2011

引用本文的文献

[1]
A biomimetic multi-component subunit vaccine via ratiometric loading of hierarchical hydrogels.

Nat Commun. 2025-7-1

[2]
Biomaterials for bone infections: antibacterial mechanisms and immunomodulatory effects.

Front Cell Infect Microbiol. 2025-5-27

[3]
Efficacy of benznidazole delivery during Chagas disease nanotherapy is dependent on the nanocarrier morphology.

Biomaterials. 2025-11

[4]
PBMC and fibroblast cocultures to mimic the effect of BCG on trained immunity.

MicroPubl Biol. 2025-2-5

[5]
Precision adjuvants for pediatric vaccines.

Sci Transl Med. 2024-9-4

[6]
From hit to vial: Precision discovery and development of an imidazopyrimidine TLR7/8 agonist adjuvant formulation.

Sci Adv. 2024-7-5

[7]
Therapeutic expression of RAS Degrader RRSP in Pancreatic Cancer via Nanocarrier-mediated mRNA delivery.

bioRxiv. 2024-6-14

[8]
Precise modulation and use of reactive oxygen species for immunotherapy.

Sci Adv. 2024-5-17

[9]
A Biomimetic Multi-Component Subunit Vaccine via Ratiometric Loading of Hierarchical Hydrogels.

Res Sq. 2024-4-25

[10]
Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects.

Viruses. 2024-2-27

本文引用的文献

[1]
In vitro cytokine induction by TLR-activating vaccine adjuvants in human blood varies by age and adjuvant.

Cytokine. 2016-7

[2]
Adjuvant-induced Human Monocyte Secretome Profiles Reveal Adjuvant- and Age-specific Protein Signatures.

Mol Cell Proteomics. 2016-6

[3]
Peptide-specific T helper cells identified by MHC class II tetramers differentiate into several subtypes upon immunization with CAF01 adjuvanted H56 tuberculosis vaccine formulation.

Vaccine. 2015-11-27

[4]
Pediatric Vaccine Adjuvants: Components of the Modern Vaccinologist's Toolbox.

Pediatr Infect Dis J. 2015-12

[5]
The Imidazoquinoline Toll-Like Receptor-7/8 Agonist Hybrid-2 Potently Induces Cytokine Production by Human Newborn and Adult Leukocytes.

PLoS One. 2015-8-14

[6]
Editorial Commentary: Different Strains of Bacillus Calmette-Guérin Vaccine Have Very Different Effects on Tuberculosis and on Unrelated Infections.

Clin Infect Dis. 2015-9-15

[7]
Rational design of small molecules as vaccine adjuvants.

Sci Transl Med. 2014-11-19

[8]
Soluble mediators regulating immunity in early life.

Front Immunol. 2014-9-24

[9]
The effect of stable macromolecular complexes of ionic polyphosphazene on HIV Gag antigen and on activation of human dendritic cells and presentation to T-cells.

Biomaterials. 2014-7-11

[10]
Ontogeny of early life immunity.

Trends Immunol. 2014-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索