Suppr超能文献

优化类固醇C25脱氢酶伴侣蛋白的过表达以进行生化和生物物理表征。

Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization.

作者信息

Niedzialkowska Ewa, Mrugała Beata, Rugor Agnieszka, Czub Mateusz P, Skotnicka Anna, Cotelesage Julien J H, George Graham N, Szaleniec Maciej, Minor Wladek, Lewiński Krzysztof

机构信息

Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland.

Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland.

出版信息

Protein Expr Purif. 2017 Jun;134:47-62. doi: 10.1016/j.pep.2017.03.019. Epub 2017 Mar 23.

Abstract

Molybdenum is an essential nutrient for metabolism in plant, bacteria, and animals. Molybdoenzymes are involved in nitrogen assimilation and oxidoreductive detoxification, and bioconversion reactions of environmental, industrial, and pharmaceutical interest. Molybdoenzymes contain a molybdenum cofactor (Moco), which is a pyranopterin heterocyclic compound that binds a molybdenum atom via a dithiolene group. Because Moco is a large and complex compound deeply buried within the protein, molybdoenzymes are accompanied by private chaperone proteins responsible for the cofactor's insertion into the enzyme and the enzyme's maturation. An efficient recombinant expression and purification of both Moco-free and Moco-containing molybdoenzymes and their chaperones is of paramount importance for fundamental and applied research related to molybdoenzymes. In this work, we focused on a D1 protein annotated as a chaperone of steroid C25 dehydrogenase (S25DH) from Sterolibacterium denitrificans Chol-1S. The D1 protein is presumably involved in the maturation of S25DH engaged in oxygen-independent oxidation of sterols. As this chaperone is thought to be a crucial element that ensures the insertion of Moco into the enzyme and consequently, proper folding of S25DH optimization of the chaperon's expression is the first step toward the development of recombinant expression and purification methods for S25DH. We have identified common E. coli strains and conditions for both expression and purification that allow us to selectively produce Moco-containing and Moco-free chaperones. We have also characterized the Moco-containing chaperone by EXAFS and HPLC analysis and identified conditions that stabilize both forms of the protein. The protocols presented here are efficient and result in protein quantities sufficient for biochemical studies.

摘要

钼是植物、细菌和动物新陈代谢所必需的营养素。钼酶参与氮同化、氧化还原解毒以及环境、工业和制药领域中具有重要意义的生物转化反应。钼酶含有钼辅因子(Moco),它是一种吡喃蝶呤杂环化合物,通过二硫烯基团结合一个钼原子。由于Moco是一种深埋在蛋白质内部的大型复杂化合物,钼酶伴随着特定的伴侣蛋白,这些伴侣蛋白负责将辅因子插入酶中并促进酶的成熟。高效重组表达和纯化不含Moco和含Moco的钼酶及其伴侣蛋白对于与钼酶相关的基础研究和应用研究至关重要。在这项工作中,我们聚焦于一种被注释为反硝化固醇杆菌Chol-1S中类固醇C25脱氢酶(S25DH)伴侣蛋白的D1蛋白。D1蛋白可能参与了S25DH的成熟过程,该酶参与固醇的非氧依赖性氧化。由于这种伴侣蛋白被认为是确保Moco插入酶中从而保证S25DH正确折叠的关键因素,优化伴侣蛋白的表达是开发S25DH重组表达和纯化方法的第一步。我们已经确定了用于表达和纯化的常见大肠杆菌菌株及条件,这使我们能够选择性地生产含Moco和不含Moco的伴侣蛋白。我们还通过扩展X射线吸收精细结构(EXAFS)和高效液相色谱(HPLC)分析对含Moco的伴侣蛋白进行了表征,并确定了稳定两种蛋白形式的条件。本文介绍的方案高效,能够产生足以用于生化研究的蛋白量。

相似文献

1
Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization.
Protein Expr Purif. 2017 Jun;134:47-62. doi: 10.1016/j.pep.2017.03.019. Epub 2017 Mar 23.
2
The biosynthesis of the molybdenum cofactors in Escherichia coli.
Environ Microbiol. 2020 Jun;22(6):2007-2026. doi: 10.1111/1462-2920.15003. Epub 2020 Apr 6.
3
Molybdenum enzymes, their maturation and molybdenum cofactor biosynthesis in Escherichia coli.
Biochim Biophys Acta. 2013 Aug-Sep;1827(8-9):1086-101. doi: 10.1016/j.bbabio.2012.11.007. Epub 2012 Nov 29.
4
The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria.
Biochim Biophys Acta. 2015 Jun;1853(6):1335-49. doi: 10.1016/j.bbamcr.2014.09.021. Epub 2014 Sep 28.
5
The biosynthesis of the molybdenum cofactors.
J Biol Inorg Chem. 2015 Mar;20(2):337-47. doi: 10.1007/s00775-014-1173-y. Epub 2014 Jul 1.
6
Transfer of the molybdenum cofactor synthesized by Rhodobacter capsulatus MoeA to XdhC and MobA.
J Biol Chem. 2007 Sep 28;282(39):28493-28500. doi: 10.1074/jbc.M704020200. Epub 2007 Aug 7.
7
The structure of the Moco carrier protein from Rippkaea orientalis.
Acta Crystallogr F Struct Biol Commun. 2020 Sep 1;76(Pt 9):453-463. doi: 10.1107/S2053230X20011073. Epub 2020 Aug 28.
8
Iron-Dependent Regulation of Molybdenum Cofactor Biosynthesis Genes in Escherichia coli.
J Bacteriol. 2019 Aug 8;201(17). doi: 10.1128/JB.00382-19. Print 2019 Sep 1.
9
Chaperones in maturation of molybdoenzymes: Why specific is better than general?
Bioengineered. 2017 Mar 4;8(2):133-136. doi: 10.1080/21655979.2016.1218579. Epub 2016 Aug 31.
10
The chaperone FdsC for Rhodobacter capsulatus formate dehydrogenase binds the bis-molybdopterin guanine dinucleotide cofactor.
FEBS Lett. 2014 Feb 14;588(4):531-7. doi: 10.1016/j.febslet.2013.12.033. Epub 2014 Jan 18.

引用本文的文献

1
History of Maturation of Prokaryotic Molybdoenzymes-A Personal View.
Molecules. 2023 Oct 20;28(20):7195. doi: 10.3390/molecules28207195.
2
Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms.
Appl Microbiol Biotechnol. 2018 Oct;102(19):8153-8171. doi: 10.1007/s00253-018-9239-3. Epub 2018 Jul 21.
3
Characterizing metal-binding sites in proteins with X-ray crystallography.
Nat Protoc. 2018 May;13(5):1062-1090. doi: 10.1038/nprot.2018.018. Epub 2018 Apr 19.

本文引用的文献

1
Regioselective hydroxylation of cholecalciferol, cholesterol and other sterol derivatives by steroid C25 dehydrogenase.
Appl Microbiol Biotechnol. 2017 Feb;101(3):1163-1174. doi: 10.1007/s00253-016-7880-2. Epub 2016 Oct 11.
2
Recognizing metal and acid radical ion-binding sites by integrating ab initio modeling with template-based transferals.
Bioinformatics. 2016 Nov 1;32(21):3260-3269. doi: 10.1093/bioinformatics/btw396. Epub 2016 Jul 4.
4
25-Hydroxyvitamin D3 Synthesis by Enzymatic Steroid Side-Chain Hydroxylation with Water.
Angew Chem Int Ed Engl. 2016 Jan 26;55(5):1881-4. doi: 10.1002/anie.201510331. Epub 2015 Dec 22.
5
Protein purification and crystallization artifacts: The tale usually not told.
Protein Sci. 2016 Mar;25(3):720-33. doi: 10.1002/pro.2861. Epub 2016 Jan 26.
6
Bacterial molybdoenzymes: old enzymes for new purposes.
FEMS Microbiol Rev. 2016 Jan;40(1):1-18. doi: 10.1093/femsre/fuv043. Epub 2015 Oct 13.
7
Influence of GTP on system specific chaperone - Twin arginine signal peptide interaction.
Biochem Biophys Res Commun. 2015 Oct 2;465(4):753-7. doi: 10.1016/j.bbrc.2015.08.079. Epub 2015 Aug 20.
8
Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase.
J Biol Chem. 2015 Oct 9;290(41):25164-73. doi: 10.1074/jbc.M115.665422. Epub 2015 Aug 21.
9
Sulphur shuttling across a chaperone during molybdenum cofactor maturation.
Nat Commun. 2015 Feb 4;6:6148. doi: 10.1038/ncomms7148.
10
The mammalian molybdenum enzymes of mARC.
J Biol Inorg Chem. 2015 Mar;20(2):265-75. doi: 10.1007/s00775-014-1216-4. Epub 2014 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验