Suppr超能文献

用 X 射线晶体学描绘蛋白质中的金属结合位点。

Characterizing metal-binding sites in proteins with X-ray crystallography.

机构信息

Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.

Center for Structural Genomics of Infectious Diseases (CSGID), University of Virginia, Charlottesville, Virginia, USA.

出版信息

Nat Protoc. 2018 May;13(5):1062-1090. doi: 10.1038/nprot.2018.018. Epub 2018 Apr 19.

Abstract

Metals have crucial roles in many physiological, pathological, toxicological, pharmaceutical, and diagnostic processes. Proper handling of metal-containing macromolecule samples for structural studies is not trivial, and failure to handle them properly is often a source of irreproducibility caused by issues such as pH changes, incorporation of unexpected metals, or oxidization/reduction of the metal. This protocol outlines the guidelines and best practices for characterizing metal-binding sites in protein structures and alerts experimenters to potential pitfalls during the preparation and handling of metal-containing protein samples for X-ray crystallography studies. The protocol features strategies for controlling the sample pH and the metal oxidation state, recording X-ray fluorescence (XRF) spectra, and collecting diffraction data sets above and below the corresponding metal absorption edges. This protocol should allow experimenters to gather sufficient evidence to unambiguously determine the identity and location of the metal of interest, as well as to accurately characterize the coordinating ligands in the metal binding environment within the protein. Meticulous handling of metal-containing macromolecule samples as described in this protocol should enhance experimental reproducibility in biomedical sciences, especially in X-ray macromolecular crystallography. For most samples, the protocol can be completed within a period of 7-190 d, most of which (2-180 d) is devoted to growing the crystal. The protocol should be readily understandable to structural biologists, particularly protein crystallographers with an intermediate level of experience.

摘要

金属在许多生理、病理、毒理、药物和诊断过程中都起着至关重要的作用。对于结构研究用的含金属大分子样品,如果处理不当,就会导致 pH 值变化、意外金属掺入或金属的氧化还原等问题,从而导致结果不可重现。本方案概述了用于鉴定蛋白质结构中金属结合位点的指南和最佳实践,并提醒实验人员在为 X 射线晶体学研究准备和处理含金属蛋白质样品时可能遇到的潜在陷阱。该方案包括控制样品 pH 值和金属氧化态、记录 X 射线荧光(XRF)光谱以及在相应金属吸收边之上和之下收集衍射数据集的策略。本方案应使实验人员能够收集到足够的证据,从而明确确定感兴趣金属的身份和位置,并准确描述蛋白质中金属结合环境中的配位配体。本方案中描述的含金属大分子样品的精细处理应能提高生物医学科学实验的可重复性,尤其是在 X 射线大分子晶体学中。对于大多数样品,该方案可以在 7-190 天内完成,其中大部分时间(2-180 天)用于晶体生长。该方案应易于结构生物学家理解,特别是具有中级经验的蛋白质晶体学家。

相似文献

1
Characterizing metal-binding sites in proteins with X-ray crystallography.
Nat Protoc. 2018 May;13(5):1062-1090. doi: 10.1038/nprot.2018.018. Epub 2018 Apr 19.
3
CheckMyMetal: a macromolecular metal-binding validation tool.
Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):223-233. doi: 10.1107/S2059798317001061. Epub 2017 Feb 22.
4
Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server.
Nat Protoc. 2014 Jan;9(1):156-70. doi: 10.1038/nprot.2013.172. Epub 2013 Dec 19.
5
CheckMyMetal (CMM): validating metal-binding sites in X-ray and cryo-EM data.
IUCrJ. 2024 Sep 1;11(Pt 5):871-877. doi: 10.1107/S2052252524007073.
6
SuperStar: improved knowledge-based interaction fields for protein binding sites.
J Mol Biol. 2001 Mar 30;307(3):841-59. doi: 10.1006/jmbi.2001.4452.
7
8
Location-specific quantification of protein-bound metal ions by X-ray anomalous dispersion: Q-XAD.
Acta Crystallogr D Struct Biol. 2019 Aug 1;75(Pt 8):764-771. doi: 10.1107/S2059798319009926. Epub 2019 Jul 31.
9
X-ray crystallography and biological metal centers: is seeing believing?
Inorg Chem. 2005 Feb 21;44(4):770-8. doi: 10.1021/ic0485256.
10
Can the propensity of protein crystallization be increased by using systematic screening with metals?
Protein Sci. 2017 Sep;26(9):1704-1713. doi: 10.1002/pro.3214. Epub 2017 Jun 29.

引用本文的文献

1
The Potential of Nanopore Technologies in Peptide and Protein Sensing for Biomarker Detection.
Biosensors (Basel). 2025 Aug 16;15(8):540. doi: 10.3390/bios15080540.
2
MIC: A deep learning tool for assigning ions and waters in cryo-EM and crystal structures.
Nat Commun. 2025 Jul 4;16(1):6182. doi: 10.1038/s41467-025-61315-x.
3
Lysosomal zinc nanomodulation blocks macrophage pyroptosis for counteracting atherosclerosis progression.
Sci Adv. 2025 Jun 27;11(26):eadu3919. doi: 10.1126/sciadv.adu3919. Epub 2025 Jun 25.
4
rubrerythrin promiscuously binds metals in a structurally pre-formed bimetallic binding site.
bioRxiv. 2025 Jun 1:2025.06.01.657255. doi: 10.1101/2025.06.01.657255.
5
Nickel binding to c-Src SH3 domain facilitates crystallization.
bioRxiv. 2025 May 28:2025.05.08.652639. doi: 10.1101/2025.05.08.652639.
7
Status and perspective of protein crystallography at the first multi-bend achromat based synchrotron MAX IV.
J Synchrotron Radiat. 2025 May 1;32(Pt 3):779-791. doi: 10.1107/S1600577525002255. Epub 2025 Apr 4.
9
The Coordination Chemistry of Two Peptidic Models of NFeoB and Core CFeoB Regions of FeoB Protein: Complexes of Fe(II), Mn(II), and Zn(II).
Inorg Chem. 2025 Mar 17;64(10):5038-5052. doi: 10.1021/acs.inorgchem.4c05111. Epub 2025 Mar 6.
10
Advances in cryo-electron microscopy (cryoEM) for structure-based drug discovery.
Expert Opin Drug Discov. 2025 Feb;20(2):163-176. doi: 10.1080/17460441.2025.2450636. Epub 2025 Jan 16.

本文引用的文献

2
New developments in crystallography: exploring its technology, methods and scope in the molecular biosciences.
Biosci Rep. 2017 Jul 4;37(4). doi: 10.1042/BSR20170204. Print 2017 Aug 31.
3
Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins.
Chem Sci. 2016 Nov 1;7(11):6635-6648. doi: 10.1039/c6sc02267g. Epub 2016 Aug 15.
4
New leads for fragment-based design of rhenium/technetium radiopharmaceutical agents.
IUCrJ. 2017 Apr 11;4(Pt 3):283-290. doi: 10.1107/S2052252517003475. eCollection 2017 May 1.
5
Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization.
Protein Expr Purif. 2017 Jun;134:47-62. doi: 10.1016/j.pep.2017.03.019. Epub 2017 Mar 23.
6
CheckMyMetal: a macromolecular metal-binding validation tool.
Acta Crystallogr D Struct Biol. 2017 Mar 1;73(Pt 3):223-233. doi: 10.1107/S2059798317001061. Epub 2017 Feb 22.
7
Protein Metalation by Anticancer Metallodrugs: A Joint ESI MS and XRD Investigative Strategy.
Chemistry. 2017 May 23;23(29):6942-6947. doi: 10.1002/chem.201605801. Epub 2017 Feb 14.
8
Oxaliplatin Binding to Human Copper Chaperone Atox1 and Protein Dimerization.
Inorg Chem. 2016 Jul 5;55(13):6563-73. doi: 10.1021/acs.inorgchem.6b00750. Epub 2016 Jun 15.
10
Metalloprotein Crystallography: More than a Structure.
Acc Chem Res. 2016 Apr 19;49(4):695-702. doi: 10.1021/acs.accounts.5b00538. Epub 2016 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验