Suppr超能文献

开发一种稳健且经过验证的二维定量构效关系模型,用于预测多种功能有机分子的甜度效力。

Development of a robust and validated 2D-QSPR model for sweetness potency of diverse functional organic molecules.

机构信息

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India.

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, India.

出版信息

Food Chem Toxicol. 2018 Feb;112:551-562. doi: 10.1016/j.fct.2017.03.043. Epub 2017 Mar 24.

Abstract

In the present report, we have developed a predictive QSPR model using only easily computable two-dimensional (2D) descriptors from diverse classes of sweetening agents to find out the key structural properties which regulate their sweet potency. The available data set was curated to remove salts, mixtures and compounds without having a definite structure. A k-fold double cross validation technique was employed for variable selection prior to development of the final model. The final model was developed using partial least squares (PLS) regression analysis and selected based on a mean absolute error (MAE) based criteria for the validation sets. The model was validated extensively using different internal and external validation strategies in accordance with the Organization for Economic Co-operation and Development (OECD) guidelines. This work presented development of a validated quantitative structure-property relationship (QSPR) model obtained from k-fold double cross-validation technique in order to find out the key structural information required to enhance the sweet potency of the molecules. Finally, we have designed and proposed 13 new molecules based on the insights obtained from the QSPR model. The designed compounds showed good in silico predicted sweetness potency with acceptable ADMET profile.

摘要

在本报告中,我们开发了一个仅使用来自不同甜味剂类别的易于计算的二维(2D)描述符的预测性 QSPR 模型,以找出调节其甜度的关键结构特性。对现有数据集进行了整理,以去除盐、混合物和没有明确结构的化合物。在开发最终模型之前,采用 k 折双交叉验证技术进行变量选择。最终模型是使用偏最小二乘(PLS)回归分析开发的,并根据验证集的平均绝对误差(MAE)标准进行选择。该模型经过广泛验证,包括根据经济合作与发展组织(OECD)指南进行的不同内部和外部验证策略。这项工作提出了一种经过验证的定量构效关系(QSPR)模型的开发,该模型是通过 k 折双交叉验证技术获得的,目的是找出增强分子甜度所需的关键结构信息。最后,我们根据 QSPR 模型获得的见解设计并提出了 13 种新分子。设计的化合物表现出良好的计算机预测甜度和可接受的 ADMET 特性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验