Suppr超能文献

电子甜味剂:一个基于机器学习的甜味剂及其相对甜度预测平台。

e-Sweet: A Machine-Learning Based Platform for the Prediction of Sweetener and Its Relative Sweetness.

作者信息

Zheng Suqing, Chang Wenping, Xu Wenxin, Xu Yong, Lin Fu

机构信息

School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.

Chemical Biology Research Center, Wenzhou Medical University, Wenzhou, China.

出版信息

Front Chem. 2019 Jan 30;7:35. doi: 10.3389/fchem.2019.00035. eCollection 2019.

Abstract

Artificial sweeteners (AS) can elicit the strong sweet sensation with the low or zero calorie, and are widely used to replace the nutritive sugar in the food and beverage industry. However, the safety issue of current AS is still controversial. Thus, it is imperative to develop more safe and potent AS. Due to the costly and laborious experimental-screening of AS, sweetener/sweetness prediction could provide a good avenue to identify the potential sweetener candidates before experiment. In this work, we curate the largest dataset of 530 sweeteners and 850 non-sweeteners, and collect the second largest dataset of 352 sweeteners with the relative sweetness (RS) from the literature. In light of these experimental datasets, we adopt five machine-learning methods and conformational-independent molecular fingerprints to derive the classification and regression models for the prediction of sweetener and its RS, respectively via the consensus strategy. Our best classification model achieves the 95% confidence intervals for the accuracy (0.91 ± 0.01), precision (0.90 ± 0.01), specificity (0.94 ± 0.01), sensitivity (0.86 ± 0.01), F1-score (0.88 ± 0.01), and NER (Non-error Rate: 0.90 ± 0.01) on the test set, which outperforms the model (NER = 0.85) of Rojas et al. in terms of NER, and our best regression model gives the 95% confidence intervals for the R(test set) and ΔR [referring to |R(test set)- R(cross-validation)|] of 0.77 ± 0.01 and 0.03 ± 0.01, respectively, which is also better than the other works based on the conformation-independent 2D descriptors (e.g., 2D Dragon) according to R(test set) and ΔR. Our models are obtained by averaging over nineteen data-splitting schemes, and fully comply with the guidelines of Organization for Economic Cooperation and Development (OECD), which are not completely followed by the previous relevant works that are all on the basis of only one random data-splitting scheme for the cross-validation set and test set. Finally, we develop a user-friendly platform "e-Sweet" for the automatic prediction of sweetener and its corresponding RS. To our best knowledge, it is a first and free platform that can enable the experimental food scientists to exploit the current machine-learning methods to boost the discovery of more AS with the low or zero calorie content.

摘要

人工甜味剂(AS)能够以低热量或零热量产生强烈的甜味感觉,并且在食品和饮料行业中被广泛用于替代营养性糖类。然而,当前人工甜味剂的安全性问题仍然存在争议。因此,开发更安全、更有效的人工甜味剂势在必行。由于人工甜味剂的实验筛选成本高且费力,甜味剂/甜度预测可以为在实验前识别潜在的甜味剂候选物提供一条很好的途径。在这项工作中,我们整理了包含530种甜味剂和850种非甜味剂的最大数据集,并从文献中收集了包含352种具有相对甜度(RS)的甜味剂的第二大数据集。鉴于这些实验数据集,我们采用五种机器学习方法和构象无关的分子指纹,分别通过共识策略推导用于预测甜味剂及其相对甜度的分类和回归模型。我们最好的分类模型在测试集上的准确率(0.9​​1±0.01)、精确率(0.90±0.01)、特异性(0.94±0.01)、灵敏度(0.86±0.01)、F1分数(0.88±0.01)和NER(非错误率:0.90±0.01)达到了95%的置信区间,在NER方面优于Rojas等人的模型(NER = 0.85),并且我们最好的回归模型在测试集上的R值和ΔR [指|R(测试集)-R(交叉验证)|]的95%置信区间分别为0.77±0.01和0.03±0.01,根据测试集上的R值和ΔR,这也优于基于构象无关的二维描述符(例如二维Dragon)的其他工作。我们的模型是通过对19种数据拆分方案进行平均得到的,并且完全符合经济合作与发展组织(OECD)的指导方针,而之前的相关工作都仅基于交叉验证集和测试集的一种随机数据拆分方案,并未完全遵循这些指导方针。最后,我们开发了一个用户友好的平台“e-Sweet”,用于自动预测甜味剂及其相应相对甜度。据我们所知,这是第一个免费平台,能够使食品科学实验人员利用当前的机器学习方法来促进发现更多低热量或零热量的人工甜味剂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7e7/6363693/964c64ba05c9/fchem-07-00035-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验