Suppr超能文献

利用分子结构片段的相关权重构建可靠的定量构效关系(QSPR)模型,以预测含能化合物的撞击感度。

Construction of reliable QSPR models for predicting the impact sensitivity of nitroenergetic compounds using correlation weights of the fragments of molecular structures.

作者信息

Lotfi Shahram, Ahmadi Shahin, Toropova Alla P, Toropov Andrey A

机构信息

Department of Chemistry, Payame Noor University (PNU), 19395-4697, Tehran, Iran.

Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.

出版信息

Sci Rep. 2025 Apr 1;15(1):11160. doi: 10.1038/s41598-025-95129-0.

Abstract

Impact sensitivity is a critical property of energetic molecules, indicating their tendency to react when subjected to mechanical stimuli such as impact. Nitro compounds are widely used as explosives across industrial, military, and civilian applications, making their safe handling a significant concern for engineers and scientists working with these materials. Predicting whether a molecule has the potential to pose safety risks is therefore of great importance. This study aimed to develop a QSPR model for predicting the impact sensitivity of 404 nitro compounds using the Monte Carlo algorithm implemented in CORAL-2023 software. The Simplified Molecular Input Line Entry System (SMILES) was employed to represent the molecular structures, while correlation weight descriptors were computed. Four target functions (TF0, TF1, TF2, and TF3) were used to generate robust models. The first model applied Monte Carlo optimization without the inclusion of IIC (information index of correlation) or CII (correlation index of information); the second incorporated IIC; the third incorporated CII; and the fourth applied both IIC and CII. Comparative statistical analyses indicated that the model integrating both IIC and CII demonstrated superior predictive performance, with the best results observed in split 2 (R = 0.7821, IIC = 0.6529, CII=0.8766, Q = 0.7715, and [Formula: see text] = 0.7464).

摘要

撞击感度是含能分子的一项关键特性,表明其在受到撞击等机械刺激时发生反应的倾向。硝基化合物广泛用作工业、军事和民用领域的炸药,因此其安全处理是从事这些材料研究的工程师和科学家极为关注的问题。所以,预测一个分子是否有可能带来安全风险至关重要。本研究旨在利用CORAL - 2023软件中实现的蒙特卡罗算法,开发一种用于预测404种硝基化合物撞击感度的定量构效关系(QSPR)模型。采用简化分子输入线性表记系统(SMILES)来表示分子结构,同时计算相关权重描述符。使用四个目标函数(TF0、TF1、TF2和TF3)来生成稳健的模型。第一个模型应用蒙特卡罗优化,不包含IIC(相关信息指数)或CII(信息相关指数);第二个模型纳入了IIC;第三个模型纳入了CII;第四个模型同时应用了IIC和CII。比较统计分析表明,同时整合IIC和CII的模型表现出卓越的预测性能,在分割2中观察到最佳结果(R = 0.7821,IIC = 0.6529,CII = 0.8766,Q = 0.7715,以及[公式:见原文] = 0.7464)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b421/11961700/d2f36b9ccf4a/41598_2025_95129_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验