Zhang Jing, Liu Caixia, Xie Yijia, Li Ning, Ning Zhanguo, Du Na, Huang Xirong, Zhong Yaohua
State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan 250100, PR China.
Shandong Xingguang Sugar Group Co., Ltd., Laoling, Dezhou, 253600, PR China.
J Biotechnol. 2017 May 10;249:25-33. doi: 10.1016/j.jbiotec.2017.03.021. Epub 2017 Mar 23.
Aspergillus niger ATCC20611 is one of the most potent filamentous fungi used commercially for production of fructooligosaccharides (FOS), which are prospective components of functional food by stimulating probiotic bacteria in the human gut. However, current strategies for improving FOS yield still rely on production process development. The genetic engineering approach hasn't been applied in industrial strains to increase FOS production level. Here, an optimized polyethylene glycol (PEG)-mediated protoplast transformation system was established in A. niger ATCC 20611 and used for further strain improvement. The pyrithiamine resistance gene (ptrA) was selected as a dominant marker and protoplasts were prepared with high concentration (up to 10g wet weight mycelium) by using mixed cell wall-lysing enzymes. The transformation frequency with ptrA can reach 30-50 transformants per μg of DNA. In addition, the efficiency of co-transformation with the EGFP reporter gene (egfp) was high (approx. 82%). Furthermore, an activity-improved variant of β-fructofuranosidase, FopA(A178P), was successfully overexpressed in A. niger ATCC 20611 by using the transformation system. The transformant, CM6, exhibited a 58% increase in specific β-fructofuranosidase activity (up to 507U/g), compared to the parental strain (320U/g), and effectively reduced the time needed for completion of FOS synthesis. These results illustrate the feasibility of strain improvement through genetic engineering for further enhancement of FOS production level.
黑曲霉ATCC20611是商业上用于生产低聚果糖(FOS)的最有效的丝状真菌之一,低聚果糖通过刺激人体肠道中的益生菌而成为功能性食品的潜在成分。然而,目前提高FOS产量的策略仍然依赖于生产工艺的改进。基因工程方法尚未应用于工业菌株以提高FOS的生产水平。在此,在黑曲霉ATCC 20611中建立了优化的聚乙二醇(PEG)介导的原生质体转化系统,并用于进一步的菌株改良。选择抗硫胺素基因(ptrA)作为显性标记,并通过使用混合细胞壁裂解酶以高浓度(高达10g湿重菌丝体)制备原生质体。ptrA的转化频率可达每μg DNA 30-50个转化体。此外,与EGFP报告基因(egfp)共转化的效率很高(约82%)。此外,通过该转化系统成功地在黑曲霉ATCC 20611中过表达了β-呋喃果糖苷酶的活性改进变体FopA(A178P)。与亲本菌株(320U/g)相比,转化体CM6的β-呋喃果糖苷酶比活性提高了58%(高达507U/g),并有效缩短了FOS合成所需的时间。这些结果说明了通过基因工程改良菌株以进一步提高FOS生产水平的可行性。
Microb Cell Fact. 2024-3-9
Microb Cell Fact. 2024-3-9
Biodes Res. 2023-9-29
J Fungi (Basel). 2023-8-8
Biotechnol Biofuels Bioprod. 2023-2-13
Appl Microbiol Biotechnol. 2022-6