Suppr超能文献

石墨烯的功函数工程

Work Function Engineering of Graphene.

作者信息

Garg Rajni, Dutta Naba K, Choudhury Namita Roy

机构信息

Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, 5095 Adelaide, Australia.

出版信息

Nanomaterials (Basel). 2014 Apr 3;4(2):267-300. doi: 10.3390/nano4020267.

Abstract

Graphene is a two dimensional one atom thick allotrope of carbon that displays unusual crystal structure, electronic characteristics, charge transport behavior, optical clarity, physical & mechanical properties, thermal conductivity and much more that is yet to be discovered. Consequently, it has generated unprecedented excitement in the scientific community; and is of great interest to wide ranging industries including semiconductor, optoelectronics and printed electronics. Graphene is considered to be a next-generation conducting material with a remarkable band-gap structure, and has the potential to replace traditional electrode materials in optoelectronic devices. It has also been identified as one of the most promising materials for post-silicon electronics. For many such applications, modulation of the electrical and optical properties, together with tuning the band gap and the resulting work function of zero band gap graphene are critical in achieving the desired properties and outcome. In understanding the importance, a number of strategies including various functionalization, doping and hybridization have recently been identified and explored to successfully alter the work function of graphene. In this review we primarily highlight the different ways of surface modification, which have been used to specifically modify the band gap of graphene and its work function. This article focuses on the most recent perspectives, current trends and gives some indication of future challenges and possibilities.

摘要

石墨烯是一种二维的、仅一个原子厚的碳的同素异形体,它展现出非同寻常的晶体结构、电子特性、电荷传输行为、光学透明度、物理及机械性能、热导率以及许多尚未被发现的特性。因此,它在科学界引发了前所未有的热潮;并且受到包括半导体、光电子学和印刷电子学等广泛行业的极大关注。石墨烯被认为是一种具有卓越带隙结构的下一代导电材料,并且有潜力在光电器件中替代传统电极材料。它也被认定为后硅时代电子学中最具前景的材料之一。对于许多此类应用而言,调节电学和光学性能,以及调整带隙和由此产生的零带隙石墨烯的功函数,对于实现所需性能和结果至关重要。在认识到其重要性之后,最近已经确定并探索了包括各种功能化、掺杂和杂化在内的多种策略,以成功改变石墨烯的功函数。在这篇综述中,我们主要强调了用于特定修饰石墨烯带隙及其功函数的不同表面改性方法。本文聚焦于最新观点、当前趋势,并对未来的挑战和可能性给出了一些提示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8030/5304665/164987814712/nanomaterials-04-00267-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验