Thiagarajan Raghuram, Alavi Amir, Podichetty Jagdeep T, Bazil Jason N, Beard Daniel A
Pratt & Miller Engineering, WK Smith Drive, New Hudson, MI USA.
Department of Molecular and Integrative Physiology, University of Michigan, North Campus Research Complex, Ann Arbor, MI USA.
Algorithms Mol Biol. 2017 Mar 20;12:8. doi: 10.1186/s13015-017-0100-5. eCollection 2017.
Systems research spanning fields from biology to finance involves the identification of models to represent the underpinnings of complex systems. Formal approaches for data-driven identification of network interactions include statistical inference-based approaches and methods to identify dynamical systems models that are capable of fitting multivariate data. Availability of large data sets and so-called 'big data' applications in biology present great opportunities as well as major challenges for systems identification/reverse engineering applications. For example, both inverse identification and forward simulations of genome-scale gene regulatory network models pose compute-intensive problems. This issue is addressed here by combining the processing power of Graphics Processing Units (GPUs) and a parallel reverse engineering algorithm for inference of regulatory networks. It is shown that, given an appropriate data set, information on genome-scale networks (systems of 1000 or more state variables) can be inferred using a reverse-engineering algorithm in a matter of days on a small-scale modern GPU cluster.
从生物学到金融领域的系统研究涉及识别用于表示复杂系统基础的模型。基于数据驱动识别网络相互作用的形式化方法包括基于统计推断的方法以及识别能够拟合多变量数据的动态系统模型的方法。生物学中大数据集的可用性以及所谓的“大数据”应用为系统识别/逆向工程应用带来了巨大机遇和重大挑战。例如,基因组规模基因调控网络模型的逆向识别和正向模拟都带来了计算密集型问题。本文通过结合图形处理单元(GPU)的处理能力和用于推断调控网络的并行逆向工程算法来解决这个问题。结果表明,给定适当的数据集,使用逆向工程算法在小型现代GPU集群上只需几天时间就能推断出基因组规模网络(具有1000个或更多状态变量的系统)的信息。