Suppr超能文献

通过光谱学探究外延石墨烯中界面缓冲层的介电响应。

Probing the dielectric response of the interfacial buffer layer in epitaxial graphene via optical spectroscopy.

作者信息

Hill Heather M, Rigosi Albert F, Chowdhury Sugata, Yang Yanfei, Nguyen Nhan V, Tavazza Francesca, Elmquist Randolph E, Newell David B, Hight Walker Angela R

机构信息

Physical Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, United States.

Joint Quantum Institute, University of Maryland, College Park, MD 20742, United States.

出版信息

Phys Rev B. 2017 Nov;96(19). doi: 10.1103/PhysRevB.96.195437. Epub 2017 Nov 28.

Abstract

Monolayer epitaxial graphene (EG) is a suitable candidate for a variety of electronic applications. One advantage of EG growth on the Si face of SiC is that it develops as a single crystal, as does the layer below, referred to as the interfacial buffer layer (IBL), whose properties include an electronic band gap. Though much research has been conducted to learn about the electrical properties of the IBL, not nearly as much work has been reported on the optical properties of the IBL. In this work, we combine measurements from Mueller matrix ellipsometry, differential reflectance contrast, atomic force microscopy, and Raman spectroscopy, as well as calculations from Kramers-Kronig analyses and density functional theory (DFT), to determine the dielectric function of the IBL within the energy range of 1 eV to 8.5 eV.

摘要

单层外延石墨烯(EG)是多种电子应用的合适候选材料。在碳化硅(SiC)的硅面上生长EG的一个优点是,它与下面的层(称为界面缓冲层,IBL)一样,以单晶形式生长,其特性包括电子带隙。尽管已经进行了大量研究来了解IBL的电学性质,但关于IBL光学性质的报道却少得多。在这项工作中,我们结合了穆勒矩阵椭偏仪、差分反射对比度、原子力显微镜和拉曼光谱的测量结果,以及克莱默斯-克勒尼希分析和密度泛函理论(DFT)的计算结果,以确定在1 eV至8.5 eV能量范围内IBL的介电函数。

相似文献

1
Probing the dielectric response of the interfacial buffer layer in epitaxial graphene via optical spectroscopy.
Phys Rev B. 2017 Nov;96(19). doi: 10.1103/PhysRevB.96.195437. Epub 2017 Nov 28.
3
4
Band Gap Opening Induced by the Structural Periodicity in Epitaxial Graphene Buffer Layer.
Nano Lett. 2017 Apr 12;17(4):2681-2689. doi: 10.1021/acs.nanolett.7b00509. Epub 2017 Mar 30.
5
Highly sensitive broadband binary photoresponse in gateless epitaxial graphene on 4H-SiC.
Carbon N Y. 2021 Oct;184. doi: 10.1016/j.carbon.2021.07.098.
6
Raman Spectroscopy Imaging of Exceptional Electronic Properties in Epitaxial Graphene Grown on SiC.
Nanomaterials (Basel). 2020 Nov 11;10(11):2234. doi: 10.3390/nano10112234.
8
Effects of Pb Intercalation on the Structural and Electronic Properties of Epitaxial Graphene on SiC.
Small. 2016 Aug;12(29):3956-66. doi: 10.1002/smll.201600666. Epub 2016 Jun 13.
9
Direct band-gap crossover in epitaxial monolayer boron nitride.
Nat Commun. 2019 Jun 14;10(1):2639. doi: 10.1038/s41467-019-10610-5.

引用本文的文献

1
Highly sensitive broadband binary photoresponse in gateless epitaxial graphene on 4H-SiC.
Carbon N Y. 2021 Oct;184. doi: 10.1016/j.carbon.2021.07.098.
2
Computational Methods for Charge Density Waves in 2D Materials.
Nanomaterials (Basel). 2022 Feb 1;12(3):504. doi: 10.3390/nano12030504.
3
Dielectric Properties of NbWSe Alloys.
J Res Natl Inst Stand Technol. 2019 Dec 16;124:1-10. doi: 10.6028/jres.124.035. eCollection 2019.
4
Atypical Quantized Resistances in Millimeter-Scale Epitaxial Graphene Junctions.
Carbon N Y. 2019;154. doi: 10.1016/j.carbon.2019.08.002.
5
Comprehensive optical characterization of atomically thin NbSe.
Phys Rev B. 2018;98. doi: 10.1103/PhysRevB.98.165109.

本文引用的文献

2
Epitaxial graphene homogeneity and quantum Hall effect in millimeter-scale devices.
Carbon N Y. 2017 May;115:229-236. doi: 10.1016/j.carbon.2016.12.087. Epub 2016 Dec 30.
3
Electrical Stabilization of Surface Resistivity in Epitaxial Graphene Systems by Amorphous Boron Nitride Encapsulation.
ACS Omega. 2017;2(5):2326-2332. doi: 10.1021/acsomega.7b00341. Epub 2017 May 25.
5
Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene.
Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4082-4086. doi: 10.1073/pnas.1620176114. Epub 2017 Apr 3.
6
Band Gap Opening Induced by the Structural Periodicity in Epitaxial Graphene Buffer Layer.
Nano Lett. 2017 Apr 12;17(4):2681-2689. doi: 10.1021/acs.nanolett.7b00509. Epub 2017 Mar 30.
7
Wide Band Gap Semiconductor from a Hidden 2D Incommensurate Graphene Phase.
Nano Lett. 2017 Jan 11;17(1):341-347. doi: 10.1021/acs.nanolett.6b04196. Epub 2016 Dec 21.
8
Semiconducting Graphene from Highly Ordered Substrate Interactions.
Phys Rev Lett. 2015 Sep 25;115(13):136802. doi: 10.1103/PhysRevLett.115.136802. Epub 2015 Sep 21.
9
Quantum Hall resistance standard in graphene devices under relaxed experimental conditions.
Nat Nanotechnol. 2015 Nov;10(11):965-71. doi: 10.1038/nnano.2015.192. Epub 2015 Sep 7.
10
Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2.
Nano Lett. 2015 Aug 12;15(8):5033-8. doi: 10.1021/acs.nanolett.5b01055. Epub 2015 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验