Grishkovskaya Irina, Paumann-Page Martina, Tscheliessnig Rupert, Stampler Johanna, Hofbauer Stefan, Soudi Monika, Sevcnikar Benjamin, Oostenbrink Chris, Furtmüller Paul G, Djinović-Carugo Kristina, Nauseef William M, Obinger Christian
Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria.
Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
J Biol Chem. 2017 May 19;292(20):8244-8261. doi: 10.1074/jbc.M117.775031. Epub 2017 Mar 27.
Myeloperoxidase (MPO) is synthesized by neutrophil and monocyte precursor cells and contributes to host defense by mediating microbial killing. Although several steps in MPO biosynthesis and processing have been elucidated, many questions remained, such as the structure-function relationship of monomeric unprocessed proMPO the mature dimeric MPO and the functional role of the propeptide. Here we have presented the first and high resolution (at 1.25 Å) crystal structure of proMPO and its solution structure obtained by small-angle X-ray scattering. Promyeloperoxidase hosts five occupied glycosylation sites and six intrachain cystine bridges with Cys-158 of the very flexible N-terminal propeptide being covalently linked to Cys-319 and thereby hindering homodimerization. Furthermore, the structure revealed (i) the binding site of proMPO-processing proconvertase, (ii) the structural motif for subsequent cleavage to the heavy and light chains of mature MPO protomers, and (iii) three covalent bonds between heme and the protein. Studies of the mutants C158A, C319A, and C158A/C319A demonstrated significant differences from the wild-type protein, including diminished enzymatic activity and prevention of export to the Golgi due to prolonged association with the chaperone calnexin. These structural and functional findings provide novel insights into MPO biosynthesis and processing.
髓过氧化物酶(MPO)由中性粒细胞和单核细胞前体细胞合成,并通过介导微生物杀伤作用参与宿主防御。尽管MPO生物合成和加工的几个步骤已得到阐明,但仍存在许多问题,例如未加工的单体前体MPO、成熟的二聚体MPO的结构-功能关系以及前肽的功能作用。在此,我们展示了前体MPO的首个高分辨率(1.25埃)晶体结构及其通过小角X射线散射获得的溶液结构。前髓过氧化物酶有五个被占据的糖基化位点和六个链内胱氨酸桥,非常灵活的N端前肽的Cys-158与Cys-319共价连接,从而阻碍同源二聚化。此外,该结构揭示了(i)前体MPO加工转化酶的结合位点,(ii)成熟MPO原聚体重链和轻链后续切割的结构基序,以及(iii)血红素与蛋白质之间的三个共价键。对C158A、C319A和C158A/C319A突变体的研究表明,它们与野生型蛋白存在显著差异,包括酶活性降低以及由于与伴侣钙连蛋白的长时间结合而阻止向高尔基体的转运。这些结构和功能发现为MPO的生物合成和加工提供了新的见解。