Suppr超能文献

一种斑马鱼脂肪组织的分类系统。

A classification system for zebrafish adipose tissues.

作者信息

Minchin James E N, Rawls John F

机构信息

Department of Molecular Genetics & Microbiology, Duke University, Durham, NC 27710, USA

Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Dis Model Mech. 2017 Jun 1;10(6):797-809. doi: 10.1242/dmm.025759. Epub 2017 Mar 27.

Abstract

The zebrafish model system offers significant utility for imaging of adipose tissue (AT) dynamics and for screening to identify chemical and genetic modifiers of adiposity. In particular, AT can be quantified accurately in live zebrafish using fluorescent lipophilic dyes. Although this methodology offers considerable promise, the comprehensive identification and classification of zebrafish ATs has not been performed. Here, we use fluorescent lipophilic dyes and imaging systematically to identify, classify and quantify the zebrafish AT pool. We identify 34 regionally distinct zebrafish ATs, including five visceral ATs and 22 subcutaneous ATs. For each of these ATs, we describe detailed morphological characteristics to aid their identification in future studies. Furthermore, we quantify the areas for each AT and construct regression models to allow prediction of expected AT size and variation across a range of developmental stages. Finally, we demonstrate the utility of this resource for identifying effects of strain variation and high-fat diet on AT growth. Altogether, this resource provides foundational information on the identity, dynamics and expected quantities of zebrafish ATs for use as a reference for future studies.

摘要

斑马鱼模型系统在脂肪组织(AT)动态成像以及筛选鉴定肥胖的化学和基因修饰因子方面具有重要作用。特别是,利用荧光亲脂性染料可以在活斑马鱼中准确量化AT。尽管这种方法前景广阔,但尚未对斑马鱼的AT进行全面的鉴定和分类。在此,我们使用荧光亲脂性染料并通过系统成像来鉴定、分类和量化斑马鱼的AT库。我们识别出34个区域不同的斑马鱼AT,包括5个内脏AT和22个皮下AT。对于这些AT中的每一个,我们描述了详细的形态特征,以便在未来研究中帮助识别它们。此外,我们量化了每个AT的面积,并构建回归模型以预测一系列发育阶段中预期的AT大小和变化。最后,我们展示了该资源在识别品系变异和高脂饮食对AT生长影响方面的作用。总之,该资源提供了关于斑马鱼AT的身份、动态和预期数量的基础信息,可作为未来研究的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c4e/5482999/ab74d0ee98ce/dmm-10-025759-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验