Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA.
Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA.
Cells. 2024 Mar 12;13(6):493. doi: 10.3390/cells13060493.
Cytochrome (Cyt) has both life-sustaining and cellular death-related functions, depending on subcellular localization. Within mitochondria, Cyt acts as a single electron carrier as part of the electron transport chain (ETC). When released into the cytosol after cellular insult, Cyt triggers the assembly of the apoptosome, committing the cell to intrinsic apoptosis. Due to these dual natures, Cyt requires strong regulation by the cell, including post-translational modifications, such as phosphorylation and acetylation. Six phosphorylation sites and three acetylation sites have been detected on Cyt in vivo. Phosphorylations at T28, S47, Y48, T49, T58, and Y97 tend to be present under basal conditions in a tissue-specific manner. In contrast, the acetylations at K8, K39, and K53 tend to be present in specific pathophysiological conditions. All of the phosphorylation sites and two of the three acetylation sites partially inhibit respiration, which we propose serves to maintain an optimal, intermediate mitochondrial membrane potential (ΔΨ) to minimize reactive oxygen species (ROS) production. Cyt phosphorylations are lost during ischemia, which drives ETC hyperactivity and ΔΨ hyperpolarization, resulting in exponential ROS production thus causing reperfusion injury following ischemia. One of the acetylation sites, K39, shows a unique behavior in that it is gained during ischemia, stimulating respiration while blocking apoptosis, demonstrating that skeletal muscle, which is particularly resilient to ischemia-reperfusion injury compared to other organs, possesses a different metabolic strategy to handle ischemic stress. The regulation of Cyt by these post-translational modifications underscores the importance of Cyt for the ETC, ΔΨ, ROS production, apoptosis, and the cell as a whole.
细胞色素(Cyt)具有维持生命和与细胞死亡相关的功能,这取决于亚细胞定位。在线粒体中,Cyt 作为电子传递链(ETC)的一部分充当单一电子载体。当细胞受到损伤后释放到细胞质中时,Cyt 会触发凋亡小体的组装,使细胞进入内在凋亡。由于具有这种双重性质,Cyt 需要细胞进行强烈的调节,包括翻译后修饰,如磷酸化和乙酰化。在体内已经检测到 Cyt 上有六个磷酸化位点和三个乙酰化位点。T28、S47、Y48、T49、T58 和 Y97 的磷酸化在组织特异性的基础条件下往往存在。相比之下,K8、K39 和 K53 的乙酰化倾向于存在于特定的病理生理条件下。所有的磷酸化位点和三个乙酰化位点中的两个部分抑制呼吸,我们提出这一机制是为了维持最佳的、中间的线粒体膜电位(ΔΨ),以最小化活性氧(ROS)的产生。在缺血过程中,Cyt 的磷酸化会丢失,这会导致 ETC 过度活跃和 ΔΨ 超极化,从而导致 ROS 的产生呈指数增长,从而导致缺血后的再灌注损伤。三个乙酰化位点之一的 K39 在缺血过程中表现出独特的行为,即在缺血过程中获得,刺激呼吸,同时阻止凋亡,这表明与其他器官相比,骨骼肌对缺血-再灌注损伤具有更强的抵抗力,具有不同的代谢策略来应对缺血应激。这些翻译后修饰对 Cyt 的调节突出了 Cyt 对 ETC、ΔΨ、ROS 产生、凋亡以及整个细胞的重要性。