Universität zu Köln , Department für Chemie, Greinstraße 4, 50939 Köln, Germany.
Max-Planck-Institut für Kohlenforschung , Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
J Org Chem. 2017 Apr 21;82(8):4037-4043. doi: 10.1021/acs.joc.7b00445. Epub 2017 Apr 5.
Molecular iodine, an easy to handle solid, has been successfully employed as a catalyst in different organic transformations for more than 100 years. Despite being active even in very small amounts, the origin of this remarkable catalytic effect is still unknown. Both a halogen bond mechanism as well as hidden Brønsted acid catalysis are frequently discussed as possible explanations. Our kinetic analyses reveal a reaction order of 1 in iodine, indicating that higher iodine species are not involved in the rate-limiting transition state. Our experimental investigations rule out hidden Brønsted acid catalysis by partial decomposition of I to HI and suggest a halogen bond activation instead. Finally, molecular iodine turned out to be a similar if not superior catalyst for Michael additions compared with typical Lewis acids.
分子碘是一种易于处理的固体,在超过 100 年的时间里,已成功地被用作不同有机转化中的催化剂。尽管其在非常少量时就具有活性,但这种显著的催化作用的起源仍然未知。卤素键机制以及隐藏的布朗斯特酸催化作用经常被讨论为可能的解释。我们的动力学分析表明碘的反应级数为 1,表明在限速过渡态中不涉及更高的碘物种。我们的实验研究排除了通过碘部分分解为 HI 而产生的隐藏布朗斯特酸催化作用,并提出了卤素键活化作用。最后,与典型的路易斯酸相比,分子碘在迈克尔加成中表现出相似甚至更优异的催化剂性能。