Teske Hendrik, Bartelheimer Kathrin, Meis Jan, Bendl Rolf, Stoiber Eva M, Giske Kristina
Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
Phys Med Biol. 2017 Jun 21;62(12):N271-N284. doi: 10.1088/1361-6560/aa69b6. Epub 2017 Mar 28.
The use of deformable image registration methods in the context of adaptive radiotherapy leads to uncertainties in the simulation of the administered dose distributions during the treatment course. Evaluation of these methods is a prerequisite to decide if a plan adaptation will improve the individual treatment. Current approaches using manual references limit the validity of evaluation, especially for low-contrast regions. In particular, for the head and neck region, the highly flexible anatomy and low soft tissue contrast in control images pose a challenge to image registration and its evaluation. Biomechanical models promise to overcome this issue by providing anthropomorphic motion modelling of the patient. We introduce a novel biomechanical motion model for the generation and sampling of different postures of the head and neck anatomy. Motion propagation behaviour of the individual bones is defined by an underlying kinematic model. This model interconnects the bones by joints and thus is capable of providing a wide range of motion. Triggered by the motion of the individual bones, soft tissue deformation is described by an extended heterogeneous tissue model based on the chainmail approach. This extension, for the first time, allows the propagation of decaying rotations within soft tissue without the necessity for explicit tissue segmentation. Overall motion simulation and sampling of deformed CT scans including a basic noise model is achieved within 30 s. The proposed biomechanical motion model for the head and neck site generates displacement vector fields on a voxel basis, approximating arbitrary anthropomorphic postures of the patient. It was developed with the intention of providing input data for the evaluation of deformable image registration.
在自适应放射治疗中使用可变形图像配准方法会导致在治疗过程中模拟所给予剂量分布时产生不确定性。对这些方法进行评估是决定计划调整是否会改善个体治疗效果的前提条件。当前使用手动参考的方法限制了评估的有效性,尤其是对于低对比度区域。特别是对于头颈部区域,对照图像中高度灵活的解剖结构和低软组织对比度对图像配准及其评估构成了挑战。生物力学模型有望通过提供患者的拟人化运动建模来克服这一问题。我们引入了一种新颖的生物力学运动模型,用于生成和采样头颈部解剖结构的不同姿势。各个骨骼的运动传播行为由一个潜在的运动学模型定义。该模型通过关节将骨骼相互连接,因此能够提供广泛的运动范围。由各个骨骼的运动触发,软组织变形通过基于锁子甲方法的扩展异质组织模型来描述。这种扩展首次允许在软组织内传播衰减旋转,而无需进行明确的组织分割。包括基本噪声模型在内的变形CT扫描的整体运动模拟和采样在30秒内即可完成。所提出的用于头颈部部位的生物力学运动模型在体素基础上生成位移矢量场,近似患者的任意拟人化姿势。它的开发目的是为可变形图像配准的评估提供输入数据。
Pract Radiat Oncol. 2015
Annu Int Conf IEEE Eng Med Biol Soc. 2023-7
Phys Imaging Radiat Oncol. 2025-4-23
Phys Imaging Radiat Oncol. 2024-9-14