Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse , CNRS, UPS, Toulouse 31400, France.
Institut des Sciences Moléculaires d'Orsay, Université Paris-Sud , CNRS UMR8214, Orsay 91405, France.
ACS Nano. 2017 Apr 25;11(4):4028-4040. doi: 10.1021/acsnano.7b00622. Epub 2017 Apr 4.
Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.
确定细胞如何在纳米尺度上产生和传递机械力,是理解众多生理和病理过程的主要技术挑战。Podosomes 是亚微米细胞结构,具有柱状 F-actin 核心,周围环绕着一圈黏附蛋白,具有独特的向细胞外基质突起并探测的能力。我们之前使用突起力显微镜(protrusion force microscopy)表明,单个 Podosomes 会在细胞外环境中产生局部纳米级突起。然而,细胞力是如何分布以允许这种突起机制尚不清楚。为了研究突起力产生的分子机制,我们进行了力学模拟,并对纳米级结构和力学测量进行了定量图像分析。首先,计算机模拟表明,Podosomes 对基底的变形需要突起力来平衡黏附环所在的核心周围的局部牵引力。其次,我们表明三圆环蛋白对于肌动蛋白聚合和突起力的产生是必需的。第三,我们使用 DONALD,一种提供 20nm 各向同性定位精度的 3D 纳米显微镜技术,将力的产生与 Podosome 环内 talin 的分子延伸联系起来,这需要 vinculin 和 paxillin,表明环维持机械张力。我们的工作表明,环是张力的部位,平衡核心的突起。这种相反力的局部耦合构成了突起的基础,并揭示了 Podosome 作为纳米级自主力发生器。