Debarnot Valentin, Weiss Pierre
Departement Mathematics and computer science, Basel University, Basel, Switzerland.
Institut de Recherche en Informatique de Toulouse (IRIT), CNRS & Université de Toulouse, Toulouse, France.
Biol Imaging. 2024 Nov 15;4:e13. doi: 10.1017/S2633903X24000096. eCollection 2024.
We propose a neural network architecture and a training procedure to estimate blurring operators and deblur images from a single degraded image. Our key assumption is that the forward operators can be parameterized by a low-dimensional vector. The models we consider include a description of the point spread function with Zernike polynomials in the pupil plane or product-convolution expansions, which incorporate space-varying operators. Numerical experiments show that the proposed method can accurately and robustly recover the blur parameters even for large noise levels. For a convolution model, the average signal-to-noise ratio of the recovered point spread function ranges from 13 dB in the noiseless regime to 8 dB in the high-noise regime. In comparison, the tested alternatives yield negative values. This operator estimate can then be used as an input for an unrolled neural network to deblur the image. Quantitative experiments on synthetic data demonstrate that this method outperforms other commonly used methods both perceptually and in terms of SSIM. The algorithm can process a 512 512 image under a second on a consumer graphics card and does not require any human interaction once the operator parameterization has been set up..
我们提出了一种神经网络架构和训练方法,用于从单个退化图像估计模糊算子并对图像进行去模糊处理。我们的关键假设是前向算子可以由低维向量参数化。我们考虑的模型包括在光瞳平面中用泽尼克多项式描述点扩散函数或乘积卷积展开,其中纳入了空间变化算子。数值实验表明,即使在噪声水平较大的情况下,所提出的方法也能准确且稳健地恢复模糊参数。对于卷积模型,恢复的点扩散函数的平均信噪比在无噪声情况下为13分贝,在高噪声情况下为8分贝。相比之下,测试的其他方法得出的是负值。然后,该算子估计可作为展开神经网络的输入,用于对图像进行去模糊处理。在合成数据上的定量实验表明,该方法在感知和结构相似性(SSIM)方面均优于其他常用方法。该算法在消费级图形卡上每秒可处理一幅512×512的图像,并且一旦设置好算子参数化,就无需任何人工干预。