Suppr超能文献

绿色吸收通道视紫红质ReaChR中的复杂光化学

Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR.

作者信息

Krause Benjamin S, Grimm Christiane, Kaufmann Joel C D, Schneider Franziska, Sakmar Thomas P, Bartl Franz J, Hegemann Peter

机构信息

Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany.

Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

Biophys J. 2017 Mar 28;112(6):1166-1175. doi: 10.1016/j.bpj.2017.02.001.

Abstract

Channelrhodopsins (ChRs) are light-activated ion channels widely employed for photostimulation of excitable cells. This study focuses on ReaChR, a chimeric ChR variant with optimal properties for optogenetic applications. We combined electrophysiological recordings with infrared and UV-visible spectroscopic measurements to investigate photocurrents and photochemical properties of ReaChR. Our data imply that ReaChR is green-light activated (λ = 532 nm) with a non-rhodopsin-like action spectrum peaking at 610 nm for stationary photocurrents. This unusual spectral feature is associated with photoconversion of a previously unknown light-sensitive, blue-shifted photocycle intermediate L (λ = 495 nm), which is accumulated under continuous illumination. To explain the complex photochemical reactions, we propose a symmetrical two-cycle-model based on the two C=N isomers of the retinal cofactor with either syn- or anti-configuration, each comprising six consecutive states D, K, L, M, N, and O. Ion conduction involves two states per cycle, the late M- (M) with a deprotonated retinal Schiff base and the consecutive green-absorbing N-state that both equilibrate via reversible reprotonation. In our model, a fraction of the deprotonated M-intermediate of the anti-cycle may be photoconverted-as the L-state-back to its inherent dark state, or to its M-state pendant (M') of the syn-cycle. The latter reaction pathway requires a C=C, C=N double-isomerization of the retinal chromophore, whereas the intracircular photoconversion of M back to D involves only one C=C double-bond isomerization.

摘要

通道视紫红质(ChRs)是一类光激活离子通道,广泛应用于可兴奋细胞的光刺激。本研究聚焦于ReaChR,这是一种嵌合型ChR变体,具有用于光遗传学应用的最佳特性。我们将电生理记录与红外和紫外可见光谱测量相结合,以研究ReaChR的光电流和光化学性质。我们的数据表明,ReaChR由绿光激活(λ = 532 nm),其非视紫红质样作用光谱在610 nm处达到峰值,产生稳定的光电流。这种不寻常的光谱特征与一种先前未知的、对光敏感的、蓝移光循环中间体L(λ = 495 nm)的光转化有关,该中间体在持续光照下会积累。为了解释复杂的光化学反应,我们基于视黄醛辅因子的两个具有顺式或反式构型的C=N异构体,提出了一个对称的双循环模型,每个异构体包含六个连续状态D、K、L、M、N和O。离子传导每个循环涉及两个状态,即晚期M-(M)状态,其视网膜席夫碱去质子化,以及连续的绿色吸收N状态,两者通过可逆的质子化达到平衡。在我们的模型中,反循环中去质子化的M中间体的一部分可能会被光转化——作为L状态——回到其固有的暗状态,或者回到顺循环中其M状态的对应物(M')。后一种反应途径需要视网膜发色团的C=C、C=N双键异构化,而M回到D的内环光转化仅涉及一个C=C双键异构化。

相似文献

1
Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR.
Biophys J. 2017 Mar 28;112(6):1166-1175. doi: 10.1016/j.bpj.2017.02.001.
2
Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
J Biol Chem. 2017 Aug 25;292(34):14205-14216. doi: 10.1074/jbc.M117.779629. Epub 2017 Jun 28.
4
Transition of rhodopsin into the active metarhodopsin II state opens a new light-induced pathway linked to Schiff base isomerization.
J Biol Chem. 2004 Nov 12;279(46):48102-11. doi: 10.1074/jbc.M406857200. Epub 2004 Aug 20.
5
The M intermediate of Pharaonis phoborhodopsin is photoactive.
Biophys J. 2000 Jun;78(6):3150-9. doi: 10.1016/S0006-3495(00)76851-2.
6
Platymonas subcordiformis Channelrhodopsin-2 Function: I. THE PHOTOCHEMICAL REACTION CYCLE.
J Biol Chem. 2015 Jul 3;290(27):16573-84. doi: 10.1074/jbc.M114.631614. Epub 2015 May 13.
7
Photochemical chromophore isomerization in histidine kinase rhodopsin HKR1.
FEBS Lett. 2015 Apr 28;589(10):1067-71. doi: 10.1016/j.febslet.2015.03.024. Epub 2015 Mar 31.
8
Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers.
Biochemistry. 2015 Sep 8;54(35):5389-400. doi: 10.1021/acs.biochem.5b00597. Epub 2015 Aug 20.
9
Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9896-901. doi: 10.1073/pnas.1507713112. Epub 2015 Jul 27.

引用本文的文献

1
Interaction between native and prosthetic visual responses in optogenetic visual restoration.
JCI Insight. 2025 Apr 15;10(11). doi: 10.1172/jci.insight.190785. eCollection 2025 Jun 9.
3
Enzymatic vitamin A production enables red-shifted optogenetics.
Pflugers Arch. 2023 Dec;475(12):1409-1419. doi: 10.1007/s00424-023-02880-2. Epub 2023 Nov 21.
4
QuasAr Odyssey: the origin of fluorescence and its voltage sensitivity in microbial rhodopsins.
Nat Commun. 2022 Sep 20;13(1):5501. doi: 10.1038/s41467-022-33084-4.
5
Advances and prospects of rhodopsin-based optogenetics in plant research.
Plant Physiol. 2021 Oct 5;187(2):572-589. doi: 10.1093/plphys/kiab338.
6
Modulation of Light Energy Transfer from Chromophore to Protein in the Channelrhodopsin ReaChR.
Biophys J. 2020 Aug 4;119(3):705-716. doi: 10.1016/j.bpj.2020.06.031. Epub 2020 Jul 10.
9
Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
J Biol Chem. 2017 Aug 25;292(34):14205-14216. doi: 10.1074/jbc.M117.779629. Epub 2017 Jun 28.

本文引用的文献

1
Two-Photon Holographic Stimulation of ReaChR.
Front Cell Neurosci. 2016 Oct 18;10:234. doi: 10.3389/fncel.2016.00234. eCollection 2016.
2
Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina.
EMBO Mol Med. 2016 Nov 2;8(11):1248-1264. doi: 10.15252/emmm.201505699. Print 2016 Nov.
3
Photochemical reaction cycle transitions during anion channelrhodopsin gating.
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E1993-2000. doi: 10.1073/pnas.1525269113. Epub 2016 Mar 21.
4
Enhancing Channelrhodopsins: An Overview.
Methods Mol Biol. 2016;1408:141-65. doi: 10.1007/978-1-4939-3512-3_10.
5
Identification of a Natural Green Light Absorbing Chloride Conducting Channelrhodopsin from Proteomonas sulcata.
J Biol Chem. 2016 Feb 19;291(8):4121-7. doi: 10.1074/jbc.M115.699637. Epub 2016 Jan 6.
6
Non-invasive manipulation of Drosophila behavior by two-photon excited red-activatable channelrhodopsin.
Biomed Opt Express. 2015 Oct 13;6(11):4344-52. doi: 10.1364/BOE.6.004344. eCollection 2015 Nov 1.
7
Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers.
Biochemistry. 2015 Sep 8;54(35):5389-400. doi: 10.1021/acs.biochem.5b00597. Epub 2015 Aug 20.
8
Enlightening the photoactive site of channelrhodopsin-2 by DNP-enhanced solid-state NMR spectroscopy.
Proc Natl Acad Sci U S A. 2015 Aug 11;112(32):9896-901. doi: 10.1073/pnas.1507713112. Epub 2015 Jul 27.
9
Biophysics of Channelrhodopsin.
Annu Rev Biophys. 2015;44:167-86. doi: 10.1146/annurev-biophys-060414-034014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验