Kaufmann Joel C D, Krause Benjamin S, Grimm Christiane, Ritter Eglof, Hegemann Peter, Bartl Franz J
From the Institut für medizinische Physik und Biophysik, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,.
Institut für Biologie, Experimentelle Biophysik.
J Biol Chem. 2017 Aug 25;292(34):14205-14216. doi: 10.1074/jbc.M117.779629. Epub 2017 Jun 28.
Channelrhodopsins (ChRs) are light-gated ion channels widely used for activating selected cells in large cellular networks. ChR variants with a red-shifted absorption maximum, such as the modified ChR1 red-activatable channelrhodopsin ("ReaChR," λ = 527 nm), are of particular interest because longer wavelengths allow optical excitation of cells in deeper layers of organic tissue. In all ChRs investigated so far, proton transfer reactions and hydrogen bond changes are crucial for the formation of the ion-conducting pore and the selectivity for protons cations, such as Na, K, and Ca (1). By using a combination of electrophysiological measurements and UV-visible and FTIR spectroscopy, we characterized the proton transfer events in the photocycle of ReaChR and describe their relevance for its function. 1) The central gate residue Glu (Glu in () ChR2) (i) undergoes a hydrogen bond change in D → K transition and (ii) deprotonates in K → M transition. Its negative charge in the open state is decisive for proton selectivity. 2) The counter-ion Asp (Asp in ChR2) receives the retinal Schiff base proton during M-state formation. Starting from M, a photocycle branching occurs involving (i) a direct M → D transition and (ii) formation of late photointermediates N and O. 3) The DC pair residue Asp (Asp in ChR2) deprotonates in N → O transition. Interestingly, the D196N mutation increases 15--retinal at the expense of 15-, which is the predominant isomer in the wild type, and abolishes the peak current in electrophysiological measurements. This suggests that the peak current is formed by 15- species, whereas 15- species contribute only to the stationary current.
通道视紫红质(ChRs)是一类光门控离子通道,广泛应用于激活大型细胞网络中的特定细胞。具有红移最大吸收峰的ChR变体,如经过修饰的ChR1红色可激活通道视紫红质(“ReaChR”,λ = 527 nm),特别受关注,因为更长的波长能够对有机组织更深层的细胞进行光激发。在迄今为止研究的所有ChRs中,质子转移反应和氢键变化对于离子传导孔的形成以及对质子、阳离子(如Na、K和Ca)的选择性至关重要(1)。通过结合电生理测量以及紫外可见光谱和傅里叶变换红外光谱,我们对ReaChR光循环中的质子转移事件进行了表征,并描述了它们与功能的相关性。1)中心门控残基Glu(ChR2中的Glu)(i)在D→K转变中经历氢键变化,(ii)在K→M转变中去质子化。其在开放状态下的负电荷对质子选择性起决定性作用。2)抗衡离子Asp(ChR2中的Asp)在M态形成过程中接收视黄醛席夫碱质子。从M态开始,发生光循环分支,涉及(i)直接的M→D转变和(ii)晚期光中间体N和O的形成。3)DC对残基Asp(ChR2中的Asp)在N→O转变中去质子化。有趣的是,D196N突变以牺牲野生型中占主导的15 - 异构体为代价增加了15 - 视黄醛,并且在电生理测量中消除了峰值电流。这表明峰值电流由15 - 异构体形成,而15 - 异构体仅对稳态电流有贡献。