Suppr超能文献

亚心形扁藻通道视紫红质-2的功能:I. 光化学反应循环

Platymonas subcordiformis Channelrhodopsin-2 Function: I. THE PHOTOCHEMICAL REACTION CYCLE.

作者信息

Szundi Istvan, Li Hai, Chen Eefei, Bogomolni Roberto, Spudich John L, Kliger David S

机构信息

From the Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 and.

the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030.

出版信息

J Biol Chem. 2015 Jul 3;290(27):16573-84. doi: 10.1074/jbc.M114.631614. Epub 2015 May 13.

Abstract

The photocycle kinetics of Platymonas subcordiformis channelrhodopsin-2 (PsChR2), among the most highly efficient light-gated cation channels and the most blue-shifted channelrhodopsin, was studied by time-resolved absorption spectroscopy in the 340-650-nm range and in the 100-ns to 3-s time window. Global exponential fitting of the time dependence of spectral changes revealed six lifetimes: 0.60 μs, 5.3 μs, 170 μs, 1.4 ms, 6.7 ms, and 1.4 s. The sequential intermediates derived for a single unidirectional cycle scheme based on these lifetimes were found to contain mixtures of K, L, M, O, and P molecular states, named in analogy to photointermediates in the bacteriorhodopsin photocycle. The photochemistry is described by the superposition of two independent parallel photocycles. The analysis revealed that 30% of the photoexcited receptor molecules followed Cycle 1 through the K, M, O, and P states, whereas 70% followed Cycle 2 through the K, L, M, and O states. The recovered state, R, is spectrally close, but not identical, to the dark state on the seconds time scale. The two-cycle model of this high efficiency channelrhodopsin-2 (ChR) opens new perspectives in understanding the mechanism of channelrhodopsin function.

摘要

亚心形扁藻通道视紫红质-2(PsChR2)是最高效的光门控阳离子通道之一,也是蓝移最大的通道视紫红质,利用时间分辨吸收光谱在340 - 650纳米范围内以及100纳秒至3秒的时间窗口内对其光循环动力学进行了研究。对光谱变化的时间依赖性进行全局指数拟合,得出六个寿命:0.60微秒、5.3微秒、170微秒、1.4毫秒、6.7毫秒和1.4秒。基于这些寿命为单个单向循环方案推导的连续中间体被发现包含K、L、M、O和P分子态的混合物,这些分子态的命名类似于细菌视紫红质光循环中的光中间体。光化学由两个独立的平行光循环叠加来描述。分析表明,30%的光激发受体分子通过K、M、O和P态遵循循环1,而70%的分子通过K、L、M和O态遵循循环2。恢复态R在秒时间尺度上光谱与暗态接近但不相同。这种高效通道视紫红质-2(ChR)的双循环模型为理解通道视紫红质功能机制开辟了新的视角。

相似文献

8
Photoactivation of channelrhodopsin.通道视紫红质的光激活
J Biol Chem. 2008 Jan 18;283(3):1637-1643. doi: 10.1074/jbc.M708039200. Epub 2007 Nov 9.

引用本文的文献

6
Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications.微生物视紫红质:多样性、机制及光遗传学应用
Annu Rev Biochem. 2017 Jun 20;86:845-872. doi: 10.1146/annurev-biochem-101910-144233. Epub 2017 Mar 9.

本文引用的文献

6
Light-dark adaptation of channelrhodopsin C128T mutant.C128T 突变体通道视紫红质的光暗适应
J Biol Chem. 2013 Apr 12;288(15):10451-8. doi: 10.1074/jbc.M112.446427. Epub 2013 Feb 25.
9
Diversity of Chlamydomonas channelrhodopsins.隐藻视蛋白通道的多样性。
Photochem Photobiol. 2012 Jan-Feb;88(1):119-28. doi: 10.1111/j.1751-1097.2011.01027.x. Epub 2011 Nov 29.
10
Optogenetics.光遗传学。
Nat Methods. 2011 Jan;8(1):26-9. doi: 10.1038/nmeth.f.324. Epub 2010 Dec 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验