Beaven Andrew H, Maer Andreia M, Sodt Alexander J, Rui Huan, Pastor Richard W, Andersen Olaf S, Im Wonpil
Department of Chemistry, The University of Kansas, Lawrence, Kansas.
Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York.
Biophys J. 2017 Mar 28;112(6):1185-1197. doi: 10.1016/j.bpj.2017.01.028.
Integral membrane protein function can be modulated by the host bilayer. Because biological membranes are diverse and nonuniform, we explore the consequences of lipid diversity using gramicidin A channels embedded in phosphatidylcholine (PC) bilayers composed of equimolar mixtures of di-oleoyl-PC and di-erucoyl-PC (dC+dC, respectively), di-palmitoleoyl-PC and di-nervonoyl-PC (dC+dC, respectively), and di-eicosenoyl-PC (pure dC), all of which have the same average bilayer chain length. Single-channel lifetime experiments, molecular dynamics simulations, and a simple lipid compression model are used in tandem to gain insight into lipid redistribution around the channel, which partially alleviates the bilayer deformation energy associated with channel formation. The average single-channel lifetimes in the two-component bilayers (95 ± 10 ms for dC+dC and 195 ± 20 ms for dC+dC) were increased relative to the single-component dC control bilayer (65 ± 10 ms), implying lipid redistribution. Using a theoretical treatment of thickness-dependent changes in channel lifetimes, the effective local enrichment of lipids around the channel was estimated to be 58 ± 4% dC and 66 ± 2% dC in the dC+dC and dC+dC bilayers, respectively. 3.5-μs molecular dynamics simulations show 66 ± 2% dC in the first lipid shell around the channel in the dC+dC bilayer, but no significant redistribution (50 ± 4% dC) in the dC+dC bilayer; these simulated values are within the 95% confidence intervals of the experimental averages. The strong preference for the better matching lipid (dC) near the channel in the dC+dC mixture and lesser redistribution in the dC+dC mixture can be explained by the energetic cost associated with compressing the lipids to match the channel's hydrophobic length.
整合膜蛋白的功能可被宿主双层膜调节。由于生物膜具有多样性且不均匀,我们使用嵌入由二油酰磷脂酰胆碱(di-oleoyl-PC)和二十二碳烯酰磷脂酰胆碱(di-erucoyl-PC,分别为dC和dC)、二棕榈油酰磷脂酰胆碱(di-palmitoleoyl-PC)和二神经酰磷脂酰胆碱(di-nervonoyl-PC,分别为dC和dC)以及二十二碳烯酰磷脂酰胆碱(纯dC)的等摩尔混合物组成的磷脂酰胆碱(PC)双层膜中的短杆菌肽A通道,来探究脂质多样性的影响,所有这些双层膜都具有相同的平均双层链长度。单通道寿命实验、分子动力学模拟和一个简单的脂质压缩模型被联合使用,以深入了解通道周围的脂质重新分布情况,这部分缓解了与通道形成相关的双层膜变形能。相对于单组分dC对照双层膜(65±10毫秒),双组分双层膜中的平均单通道寿命(dC+dC为95±10毫秒,dC+dC为195±20毫秒)有所增加,这意味着脂质发生了重新分布。通过对通道寿命随厚度变化的理论处理,估计在dC+dC和dC+dC双层膜中,通道周围脂质的有效局部富集分别为58±4%的dC和66±2%的dC。3.5微秒的分子动力学模拟显示,在dC+dC双层膜中通道周围的第一个脂质壳层中有66±2%的dC,但在dC+dC双层膜中没有明显的重新分布(50±4%的dC);这些模拟值在实验平均值的95%置信区间内。dC+dC混合物中通道附近对更好匹配的脂质(dC)的强烈偏好以及dC+dC混合物中较小的重新分布,可以通过与压缩脂质以匹配通道疏水长度相关的能量成本来解释。