Suppr超能文献

生理学、系统发育与最后的共同祖先。

Physiology, phylogeny, and LUCA.

作者信息

Martin William F, Weiss Madeline C, Neukirchen Sinje, Nelson-Sathi Shijulal, Sousa Filipa L

机构信息

Institute for Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany. ; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.

Institute for Molecular Evolution, Heinrich-Heine Universität Düsseldorf, Universitätstrasse 1, 40225 Düsseldorf, Germany.

出版信息

Microb Cell. 2016 Nov 25;3(12):582-587. doi: 10.15698/mic2016.12.545.

Abstract

Genomes record their own history. But if we want to look all the way back to life's beginnings some 4 billion years ago, the record of microbial evolution that is preserved in prokaryotic genomes is not easy to read. Microbiology has a lot in common with geology in that regard. Geologists know that plate tectonics and erosion have erased much of the geological record, with ancient rocks being truly rare. The same is true of microbes. Lateral gene transfer (LGT) and sequence divergence have erased much of the evolutionary record that was once written in genomes, and it is not obvious which genes among sequenced genomes are genuinely ancient. Which genes trace to the last universal ancestor, LUCA? The classical approach has been to look for genes that are universally distributed. Another approach is to make all trees for all genes, and sift out the trees where signals have been overwritten by LGT. What is left ought to be ancient. If we do that, what do we find?

摘要

基因组记录着自身的历史。但如果我们想一直追溯到约40亿年前生命的起源,保存在原核生物基因组中的微生物进化记录并不容易解读。在这方面,微生物学与地质学有很多共同之处。地质学家知道板块构造和侵蚀已经抹去了大部分地质记录,古老的岩石非常罕见。微生物也是如此。横向基因转移(LGT)和序列分歧已经抹去了曾经写在基因组中的许多进化记录,而且在已测序的基因组中,哪些基因是真正古老的并不明显。哪些基因可以追溯到最后的共同祖先,即LUCA?经典的方法是寻找普遍分布的基因。另一种方法是为所有基因构建所有的树,并筛选出信号被LGT覆盖的树。剩下的应该就是古老的。如果我们这样做,会发现什么呢?

相似文献

1
Physiology, phylogeny, and LUCA.生理学、系统发育与最后的共同祖先。
Microb Cell. 2016 Nov 25;3(12):582-587. doi: 10.15698/mic2016.12.545.
8
9
One step beyond a ribosome: The ancient anaerobic core.超越核糖体的一步:古老的厌氧核心。
Biochim Biophys Acta. 2016 Aug;1857(8):1027-1038. doi: 10.1016/j.bbabio.2016.04.284. Epub 2016 May 2.

引用本文的文献

1
Chemical Evolution of Life on Earth.地球上生命的化学演化
Genes (Basel). 2025 Feb 13;16(2):220. doi: 10.3390/genes16020220.
2
A taxon-rich and genome-scale phylogeny of Opisthokonta.后生动物的一个富含分类群和基因组规模的系统发育关系。
PLoS Biol. 2024 Sep 16;22(9):e3002794. doi: 10.1371/journal.pbio.3002794. eCollection 2024 Sep.

本文引用的文献

1
"Hot" acetogenesis.“热”乙酸生成
Extremophiles. 2017 Jan;21(1):15-26. doi: 10.1007/s00792-016-0873-3. Epub 2016 Sep 13.
2
A new view of the tree of life.生命之树的新视角。
Nat Microbiol. 2016 Apr 11;1:16048. doi: 10.1038/nmicrobiol.2016.48.
3
Lokiarchaeon is hydrogen dependent.洛基古菌依赖于氢气。
Nat Microbiol. 2016 Apr 4;1:16034. doi: 10.1038/nmicrobiol.2016.34.
5
Exploring membrane respiratory chains.探索膜呼吸链。
Biochim Biophys Acta. 2016 Aug;1857(8):1039-1067. doi: 10.1016/j.bbabio.2016.03.028. Epub 2016 Apr 20.
6
Early Microbial Evolution: The Age of Anaerobes.早期微生物进化:厌氧菌时代。
Cold Spring Harb Perspect Biol. 2015 Dec 18;8(2):a018127. doi: 10.1101/cshperspect.a018127.
7
On the Origin of Heterotrophy.《关于异养的起源》
Trends Microbiol. 2016 Jan;24(1):12-25. doi: 10.1016/j.tim.2015.10.003. Epub 2015 Nov 12.
9
Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon.保存在一颗41亿年前锆石中的潜在生物成因碳。
Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14518-21. doi: 10.1073/pnas.1517557112. Epub 2015 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验