Suppr超能文献

基于时空描述符的特征提取框架,提高肌电模式识别性能。

A Framework of Temporal-Spatial Descriptors-Based Feature Extraction for Improved Myoelectric Pattern Recognition.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1821-1831. doi: 10.1109/TNSRE.2017.2687520. Epub 2017 Mar 24.

Abstract

The extraction of the accurate and efficient descriptors of muscular activity plays an important role in tackling the challenging problem of myoelectric control of powered prostheses. In this paper, we present a new feature extraction framework that aims to give an enhanced representation of muscular activities through increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. We propose to use time-domain descriptors (TDDs) in estimating the EMG signal power spectrum characteristics; a step that preserves the computational power required for the construction of spectral features. Subsequently, TDD is used in a process that involves: 1) representing the temporal evolution of the EMG signals by progressively tracking the correlation between the TDD extracted from each analysis time window and a nonlinearly mapped version of it across the same EMG channel and 2) representing the spatial coherence between the different EMG channels, which is achieved by calculating the correlation between the TDD extracted from the differences of all possible combinations of pairs of channels and their nonlinearly mapped versions. The proposed temporal-spatial descriptors (TSDs) are validated on multiple sparse and high-density (HD) EMG data sets collected from a number of intact-limbed and amputees performing a large number of hand and finger movements. Classification results showed significant reductions in the achieved error rates in comparison to other methods, with the improvement of at least 8% on average across all subjects. Additionally, the proposed TSDs achieved significantly well in problems with HD-EMG with average classification errors of <5% across all subjects using windows lengths of 50 ms only.

摘要

准确而高效地提取肌肉活动的描述符在解决电动假肢的肌电控制这一具有挑战性的问题中起着重要作用。在本文中,我们提出了一种新的特征提取框架,旨在通过增加可以从单个和组合肌电图(EMG)通道中提取的信息量,对肌肉活动进行增强表示。我们提出使用时域描述符(TDD)来估计 EMG 信号的功率谱特征;这一步骤保留了构建谱特征所需的计算能力。随后,将 TDD 用于以下过程:1)通过逐步跟踪从每个分析时间窗口提取的 TDD 与同一 EMG 通道中其非线性映射版本之间的相关性,来表示 EMG 信号的时间演化;2)通过计算从所有可能的对通道及其非线性映射版本的差异中提取的 TDD 之间的相关性,来表示不同 EMG 通道之间的空间一致性。所提出的时空描述符(TSD)在来自多个完整肢体和截肢者进行大量手部和手指运动的多个稀疏和高密度(HD)EMG 数据集上进行了验证。分类结果表明,与其他方法相比,所实现的错误率有了显著降低,所有受试者的平均改善至少为 8%。此外,所提出的 TSD 在使用仅 50 毫秒窗口长度的情况下,在所有受试者的平均分类错误<5%的情况下,在 HD-EMG 问题上表现出色。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验