Toropova Alla P, Toropov Andrey A
IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156, Via La Masa 19, Milano, Italy.
IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, 20156, Via La Masa 19, Milano, Italy.
Toxicol Lett. 2017 Jun 5;275:57-66. doi: 10.1016/j.toxlet.2017.03.023. Epub 2017 Mar 28.
Skin sensitization (allergic contact dermatitis) is a widespread problem arising from the contact of chemicals with the skin. The detection of molecular features with undesired effect for skin is complex task owing to unclear biochemical mechanisms and unclearness of conditions of action of chemicals to skin. The development of computational methods for estimation of this endpoint in order to reduce animal testing is recommended (Cosmetics Directive EC regulation 1907/2006; EU Regulation, Regulation, 1223/2009). The CORAL software (http://www.insilico.eu/coral) gives good predictive models for the skin sensitization. Simplified molecular input-line entry system (SMILES) together with molecular graph are used to represent the molecular structure for these models. So-called hybrid optimal descriptors are used to establish quantitative structure-activity relationships (QSARs). The aim of this study is the estimation of the predictive potential of the hybrid descriptors. Three different distributions into the training (≈70%), calibration (≈15%), and validation (≈15%) sets are studied. QSAR for these three distributions are built up with using the Monte Carlo technique. The statistical characteristics of these models for external validation set are used as a measure of predictive potential of these models. The best model, according to the above criterion, is characterized by n=29, r=0.8596, RMSE=0.489. Mechanistic interpretation and domain of applicability for these models are defined.
皮肤致敏(过敏性接触性皮炎)是化学物质与皮肤接触引发的一个普遍问题。由于生化机制尚不明确以及化学物质对皮肤作用条件不清楚,检测对皮肤有不良影响的分子特征是一项复杂的任务。为减少动物实验,建议开发用于评估该终点的计算方法(欧盟化妆品指令EC法规1907/2006;欧盟法规,法规1223/2009)。CORAL软件(http://www.insilico.eu/coral)给出了良好的皮肤致敏预测模型。简化分子线性输入系统(SMILES)与分子图一起用于表示这些模型的分子结构。所谓的混合最优描述符用于建立定量构效关系(QSAR)。本研究的目的是评估混合描述符的预测潜力。研究了三种不同的划分方式,即训练集(约70%)、校准集(约15%)和验证集(约15%)。使用蒙特卡罗技术为这三种划分方式建立QSAR。这些模型针对外部验证集的统计特征被用作衡量这些模型预测潜力的指标。根据上述标准,最佳模型的特征为n = 29,r = 0.8596,RMSE = 0.489。定义了这些模型的机理解释和适用范围。