Suppr超能文献

准 SMILES:定量结构-活性关系预测抗癌活性。

Quasi-SMILES: quantitative structure-activity relationships to predict anticancer activity.

机构信息

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Via La Masa 19, 20156, Milan, Italy.

出版信息

Mol Divers. 2019 May;23(2):403-412. doi: 10.1007/s11030-018-9881-9. Epub 2018 Oct 10.

Abstract

Reliable prediction of anticancer potential of different substances for different cells using unambiguous algorithms is attractive alternative of experimental investigation of impacts of various anticancer agents to various cells. Quasi-SMILES is a sequence of symbols, which represents all available eclectic data, i.e. not only molecular structure, but also different conditions, which can have influence on examined endpoint (e.g. kinds of cells: human breast; human colon; human liver; human lung). In this work, quasi-SMILES have been used to establish predictive models for anticancer activity isoquinoline quinones related to different cells. Descriptor calculated with optimal correlation weights of different fragments of quasi-SMILES defined by the Monte Carlo technique is used to predict pIC50 as a mathematical function of molecular structure and kinds of cells. The using of the so-called index of ideality of correlation for optimization by the Monte Carlo method improves predictive potential of the model. The statistical quality of the models based on correlation weights of fragments of quasi-SMILES is good. The range of correlation coefficient between experimental and calculated pIC50 for external validation set is 0.76-0.89. The statistical stable promoters for increase and for decrease in pIC50 are established. These models can be used to improve quality of pharmaceutical agents. These computational experiments can be reproduced with available on the Internet software ( http://www.insilico.eu/coral ).

摘要

使用明确的算法可靠地预测不同物质对不同细胞的抗癌潜力,是替代实验研究各种抗癌剂对各种细胞影响的有吸引力的方法。准 SMILES 是一系列符号,它代表了所有可用的电化学数据,即不仅代表分子结构,还代表可能影响所研究终点的各种条件(例如,细胞种类:人乳腺癌;人结肠癌;人肝癌;人肺癌)。在这项工作中,准 SMILES 被用于建立与不同细胞相关的抗癌活性异喹啉醌的预测模型。用蒙特卡罗技术确定的准 SMILES 不同片段的最优相关权重计算出的描述符,用于预测 pIC50,它是分子结构和细胞种类的数学函数。通过蒙特卡罗方法使用所谓的相关理想指数来优化,提高了模型的预测能力。基于准 SMILES 片段相关权重的模型具有良好的统计质量。外部验证集中实验和计算的 pIC50 之间的相关系数范围为 0.76-0.89。建立了用于增加和减少 pIC50 的统计稳定促进剂。这些模型可用于提高药物质量。这些计算实验可以使用互联网上的可用软件(http://www.insilico.eu/coral)重现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验