Suppr超能文献

一种用于直接因果学习对患者预后影响的算法。

An algorithm for direct causal learning of influences on patient outcomes.

作者信息

Rathnam Chandramouli, Lee Sanghoon, Jiang Xia

机构信息

Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Blvd, Pittsburgh, PA 15206, USA.

Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Blvd, Pittsburgh, PA 15206, USA.

出版信息

Artif Intell Med. 2017 Jan;75:1-15. doi: 10.1016/j.artmed.2016.10.003. Epub 2016 Nov 5.

Abstract

OBJECTIVE

This study aims at developing and introducing a new algorithm, called direct causal learner (DCL), for learning the direct causal influences of a single target. We applied it to both simulated and real clinical and genome wide association study (GWAS) datasets and compared its performance to classic causal learning algorithms.

METHOD

The DCL algorithm learns the causes of a single target from passive data using Bayesian-scoring, instead of using independence checks, and a novel deletion algorithm. We generate 14,400 simulated datasets and measure the number of datasets for which DCL correctly and partially predicts the direct causes. We then compare its performance with the constraint-based path consistency (PC) and conservative PC (CPC) algorithms, the Bayesian-score based fast greedy search (FGS) algorithm, and the partial ancestral graphs algorithm fast causal inference (FCI). In addition, we extend our comparison of all five algorithms to both a real GWAS dataset and real breast cancer datasets over various time-points in order to observe how effective they are at predicting the causal influences of Alzheimer's disease and breast cancer survival.

RESULTS

DCL consistently outperforms FGS, PC, CPC, and FCI in discovering the parents of the target for the datasets simulated using a simple network. Overall, DCL predicts significantly more datasets correctly (McNemar's test significance: p<<0.0001) than any of the other algorithms for these network types. For example, when assessing overall performance (simple and complex network results combined), DCL correctly predicts approximately 1400 more datasets than the top FGS method, 1600 more datasets than the top CPC method, 4500 more datasets than the top PC method, and 5600 more datasets than the top FCI method. Although FGS did correctly predict more datasets than DCL for the complex networks, and DCL correctly predicted only a few more datasets than CPC for these networks, there is no significant difference in performance between these three algorithms for this network type. However, when we use a more continuous measure of accuracy, we find that all the DCL methods are able to better partially predict more direct causes than FGS and CPC for the complex networks. In addition, DCL consistently had faster runtimes than the other algorithms. In the application to the real datasets, DCL identified rs6784615, located on the NISCH gene, and rs10824310, located on the PRKG1 gene, as direct causes of late onset Alzheimer's disease (LOAD) development. In addition, DCL identified ER category as a direct predictor of breast cancer mortality within 5 years, and HER2 status as a direct predictor of 10-year breast cancer mortality. These predictors have been identified in previous studies to have a direct causal relationship with their respective phenotypes, supporting the predictive power of DCL. When the other algorithms discovered predictors from the real datasets, these predictors were either also found by DCL or could not be supported by previous studies.

CONCLUSION

Our results show that DCL outperforms FGS, PC, CPC, and FCI in almost every case, demonstrating its potential to advance causal learning. Furthermore, our DCL algorithm effectively identifies direct causes in the LOAD and Metabric GWAS datasets, which indicates its potential for clinical applications.

摘要

目的

本研究旨在开发并引入一种名为直接因果学习者(DCL)的新算法,用于学习单个目标的直接因果影响。我们将其应用于模拟的以及真实的临床和全基因组关联研究(GWAS)数据集,并将其性能与经典因果学习算法进行比较。

方法

DCL算法使用贝叶斯评分从被动数据中学习单个目标的原因,而不是使用独立性检验,并且采用了一种新颖的删除算法。我们生成了14400个模拟数据集,并测量DCL正确和部分预测直接原因的数据集数量。然后,我们将其性能与基于约束的路径一致性(PC)和保守PC(CPC)算法、基于贝叶斯评分的快速贪婪搜索(FGS)算法以及部分祖先图算法快速因果推断(FCI)进行比较。此外,我们将所有五种算法的比较扩展到一个真实的GWAS数据集和不同时间点的真实乳腺癌数据集,以观察它们在预测阿尔茨海默病和乳腺癌生存的因果影响方面的效果如何。

结果

在使用简单网络模拟的数据集上,DCL在发现目标的父节点方面始终优于FGS、PC、CPC和FCI。总体而言,对于这些网络类型,DCL正确预测的数据集显著多于其他任何算法(McNemar检验显著性:p << 0.0001)。例如,在评估总体性能(简单和复杂网络结果合并)时,DCL比顶级FGS方法正确预测的数据集大约多1400个,比顶级CPC方法多1600个,比顶级PC方法多4500个,比顶级FCI方法多5600个。虽然在复杂网络中FGS正确预测的数据集比DCL多,并且在这些网络中DCL正确预测的数据集仅比CPC多几个,但对于这种网络类型,这三种算法在性能上没有显著差异。然而,当我们使用更连续的准确性度量时,我们发现对于复杂网络,所有DCL方法都能够比FGS和CPC更好地部分预测更多直接原因。此外, DCL的运行时间始终比其他算法更快。在应用于真实数据集时,DCL将位于NISCH基因上的rs6784615和位于PRKG1基因上的rs10824310确定为晚发性阿尔茨海默病(LOAD)发展的直接原因。此外,DCL将雌激素受体(ER)类别确定为5年内乳腺癌死亡率的直接预测因子,将人表皮生长因子受体2(HER2)状态确定为10年乳腺癌死亡率的直接预测因子。这些预测因子在先前研究中已被确定与其各自的表型具有直接因果关系,支持了DCL的预测能力。当其他算法从真实数据集中发现预测因子时,这些预测因子要么也被DCL发现,要么无法得到先前研究的支持。

结论

我们的结果表明DCL在几乎所有情况下都优于FGS、PC、CPC和FCI,证明了其在推进因果学习方面的潜力。此外,我们的DCL算法有效地识别了LOAD和Metabric GWAS数据集中的直接原因,这表明了其在临床应用中的潜力。

相似文献

6
A Fast PC Algorithm for High Dimensional Causal Discovery with Multi-Core PCs.多核 PC 上用于高维因果发现的快速 PC 算法。
IEEE/ACM Trans Comput Biol Bioinform. 2019 Sep-Oct;16(5):1483-1495. doi: 10.1109/TCBB.2016.2591526. Epub 2016 Jul 14.
9
Constraint-based causal discovery with mixed data.基于约束的混合数据因果发现
Int J Data Sci Anal. 2018;6(1):19-30. doi: 10.1007/s41060-018-0097-y. Epub 2018 Feb 2.

本文引用的文献

10
Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder.全基因组关联研究荟萃分析注意缺陷多动障碍。
J Am Acad Child Adolesc Psychiatry. 2010 Sep;49(9):884-97. doi: 10.1016/j.jaac.2010.06.008. Epub 2010 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验