Suppr超能文献

利用具有自适应阈值的多尺度因子对复杂区域的地表温度进行降尺度处理。

Downscaling Land Surface Temperature in Complex Regions by Using Multiple Scale Factors with Adaptive Thresholds.

作者信息

Yang Yingbao, Li Xiaolong, Pan Xin, Zhang Yong, Cao Chen

机构信息

School of Earth Science and Engineering, Hohai University, 8 Buddha City West Road, Nanjing 210098, China.

College of Natural Resources and Environment, Chizhou University, No.199 Muzhi Road, Chizhou 247000, China.

出版信息

Sensors (Basel). 2017 Apr 1;17(4):744. doi: 10.3390/s17040744.

Abstract

Many downscaling algorithms have been proposed to address the issue of coarse-resolution land surface temperature (LST) derived from available satellite-borne sensors. However, few studies have focused on improving LST downscaling in urban areas with several mixed surface types. In this study, LST was downscaled by a multiple linear regression model between LST and multiple scale factors in mixed areas with three or four surface types. The correlation coefficients (CCs) between LST and the scale factors were used to assess the importance of the scale factors within a moving window. CC thresholds determined which factors participated in the fitting of the regression equation. The proposed downscaling approach, which involves an adaptive selection of the scale factors, was evaluated using the LST derived from four Landsat 8 thermal imageries of Nanjing City in different seasons. Results of the visual and quantitative analyses show that the proposed approach achieves relatively satisfactory downscaling results on 11 August, with coefficient of determination and root-mean-square error of 0.87 and 1.13 °C, respectively. Relative to other approaches, our approach shows the similar accuracy and the availability in all seasons. The best (worst) availability occurred in the region of vegetation (water). Thus, the approach is an efficient and reliable LST downscaling method. Future tasks include reliable LST downscaling in challenging regions and the application of our model in middle and low spatial resolutions.

摘要

为解决现有星载传感器获取的粗分辨率陆地表面温度(LST)问题,人们提出了许多降尺度算法。然而,很少有研究关注在具有多种混合地表类型的城市地区改善LST降尺度。在本研究中,利用LST与具有三种或四种地表类型的混合区域中多个尺度因子之间的多元线性回归模型对LST进行降尺度。LST与尺度因子之间的相关系数(CCs)用于评估移动窗口内尺度因子的重要性。CC阈值决定哪些因子参与回归方程的拟合。利用南京市不同季节的四幅Landsat 8热成像数据得到的LST,对所提出的涉及尺度因子自适应选择的降尺度方法进行了评估。视觉分析和定量分析结果表明,所提出的方法在8月11日取得了相对令人满意的降尺度结果,决定系数和均方根误差分别为0.87和1.13℃。相对于其他方法,我们的方法在所有季节都显示出相似的精度和可用性。最佳(最差)可用性出现在植被(水体)区域。因此,该方法是一种高效可靠的LST降尺度方法。未来的任务包括在具有挑战性的区域进行可靠的LST降尺度以及将我们的模型应用于中低空间分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87dd/5421704/9ea718be7553/sensors-17-00744-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验