Hassan-Esfahani Leila, Ebtehaj Ardeshir M, Torres-Rua Alfonso, McKee Mac
Civil & Environmental Engineering, Utah State University, Logan, UT 84322, USA.
College of Science & Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
Sensors (Basel). 2017 Sep 14;17(9):2106. doi: 10.3390/s17092106.
Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from "AggieAir", an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products.
由于卫星图像的空间分辨率较粗,星载观测在精准农业(PA)中的应用常常受到限制。本文利用高分辨率航空观测来提高卫星数据的空间分辨率,以用于PA中的相关应用。提出了一种新的变分降尺度方案,该方案使用来自无人航空系统“AggieAir”的同步航空图像产品,来提高陆地卫星数据的空间分辨率。此方法主要针对可用于推导归一化植被指数(NDVI)和地表土壤湿度(SSM)的单波段陆地卫星图像进行降尺度测试。定量和定性结果表明,该降尺度方法具有良好的能力,能够将陆地卫星图像的空间分辨率有效提高2至4个数量级。具体而言,降尺度方案恢复了图像中缺失的高分辨率特征,在可见光、近红外和热红外波段中,均方根误差分别降低了15%、11%和10%。在推导的NDVI中,该指标降低了9%,而对于土壤湿度产品而言,该指标的降低可忽略不计。