Suppr超能文献

一种用于冷冻电镜中自动粒子选择的两相改进相关方法。

A Two-Phase Improved Correlation Method for Automatic Particle Selection in Cryo-EM.

作者信息

Zhang Fa, Chen Yu, Ren Fei, Wang Xuan, Liu Zhiyong, Wan Xiaohua

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2017 Mar-Apr;14(2):316-325. doi: 10.1109/TCBB.2015.2415787.

Abstract

Particle selection from cryo-electron microscopy (Cryo-EM) images is very important for high-resolution reconstruction of macromolecular structure. The methods of particle selection can be roughly grouped into two classes, template-matching methods and feature-based methods. In general, template-matching methods usually generate better results than feature-based methods. However, the accuracy of template-matching methods is restricted by the noise and low contrast of Cryo-EM images. Moreover, the processing speed of template-matching methods, restricted by the random orientation of particles, further limits their practical applications. In this paper, combining the advantages of feature-based methods and template-matching methods, we present a two-phase improved correlation method for automatic, fast particle selection. In Phase I, we generate a preliminary particle set using rotation-invariant features of particles. In Phase II, we filter the preliminary particle set using a correlation method to reduce the interference of the high noise background and improve the precision of particle selection. We apply several optimization strategies, including a modified adaboost algorithm, Divide and Conquer technique, cascade strategy and graphics processing unit parallel technique, to improve feature recognition ability and reduce processing time. In addition, we developed two correlation score functions for different correlation situations. Experimental results on the benchmark of Cryo-EM images show that our method can improve the accuracy and processing speed of particle selection significantly.

摘要

从冷冻电子显微镜(Cryo-EM)图像中选择颗粒对于大分子结构的高分辨率重建非常重要。颗粒选择方法大致可分为两类,即模板匹配方法和基于特征的方法。一般来说,模板匹配方法通常比基于特征的方法产生更好的结果。然而,模板匹配方法的准确性受到Cryo-EM图像噪声和低对比度的限制。此外,模板匹配方法的处理速度受到颗粒随机取向的限制,进一步限制了它们的实际应用。在本文中,结合基于特征的方法和模板匹配方法的优点,我们提出了一种用于自动、快速颗粒选择的两阶段改进相关方法。在第一阶段,我们使用颗粒的旋转不变特征生成一个初步颗粒集。在第二阶段,我们使用相关方法对初步颗粒集进行滤波,以减少高噪声背景的干扰并提高颗粒选择的精度。我们应用了几种优化策略,包括改进的adaboost算法、分治法、级联策略和图形处理单元并行技术,以提高特征识别能力并减少处理时间。此外,我们针对不同的相关情况开发了两个相关得分函数。在Cryo-EM图像基准上的实验结果表明,我们的方法可以显著提高颗粒选择的准确性和处理速度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验