Fernández-Moya Sandra M, Ehses Janina, Kiebler Michael A
BioMedical Center, Ludwig Maximilians University, Planegg-Martinsried, Germany.
FEBS Lett. 2017 Jun;591(11):1455-1470. doi: 10.1002/1873-3468.12639. Epub 2017 Apr 19.
The central dogma of RNA processing has started to totter. Single genes produce a variety of mRNA isoforms by mRNA modification, alternative polyadenylation (APA), and splicing. Different isoforms, even those that code for the identical protein, may differ in function or spatiotemporal expression. One option of how this can be achieved is by the selective recruitment of trans-acting factors to the 3'-untranslated region of a given isoform. Recent innovations in high-throughput RNA-sequencing methods allow deep insight into global RNA regulation, whereas novel imaging-based technologies enable researchers to explore single RNA molecules during different stages of development, in different tissues and different compartments of the cell. Resolving the dynamic function of ribonucleoprotein particles in splicing, APA, or RNA modification will enable us to understand their contribution to pathological conditions.
RNA 加工的中心法则已开始动摇。单个基因通过 mRNA 修饰、可变聚腺苷酸化(APA)和剪接产生多种 mRNA 异构体。不同的异构体,即使是那些编码相同蛋白质的异构体,在功能或时空表达上也可能有所不同。实现这一点的一种方式是将反式作用因子选择性募集到特定异构体的 3' 非翻译区。高通量 RNA 测序方法的最新创新使我们能够深入了解全局 RNA 调控,而基于成像的新技术使研究人员能够在发育的不同阶段、不同组织和细胞的不同区室中探索单个 RNA 分子。解析核糖核蛋白颗粒在剪接、APA 或 RNA 修饰中的动态功能将使我们能够了解它们对病理状况的作用。