Department of Pulmonary Medicine, Medisch Spectrum Twente, Enschede, The Netherlands.
J Breath Res. 2017 Jun 1;11(2):026006. doi: 10.1088/1752-7163/aa6b08.
Only 15% of lung cancer cases present with potentially curable disease. Therefore, there is much interest in a fast, non-invasive tool to detect lung cancer earlier. Exhaled breath analysis using electronic nose technology measures volatile organic compounds (VOCs) in exhaled breath that are associated with lung cancer.
The diagnostic accuracy of the Aeonose™ is currently being studied in a multi-centre, prospective study in 210 subjects suspected for lung cancer, where approximately half will have a confirmed diagnosis and the other half will have a rejected diagnosis of lung cancer. We will also include 100-150 healthy control subjects. The eNose Company (provider of the Aeonose™) uses a software program, called Aethena, comprising pre-processing, data compression and neural networks to handle big data analyses. Each individual exhaled breath measurement comprises a data matrix with thousands of conductivity values. This is followed by data compression using a Tucker3-like algorithm, resulting in a vector. Subsequently, model selection takes place after entering vectors with different presets in an artificial neural network to train and evaluate the results. Next, a 'judge model' is formed, which is a combination of models for optimizing performance. Finally, two types of cross-validation, being 'leave-10%-out' cross-validation and 'bagging', are used when recalculating the judge models. These judge models are subsequently used to classify new, blind measurements.
Data analysis in eNose technology is principally based on generating prediction models that need to be validated internally and externally for eventual use in clinical practice. This paper describes the analysis of big data, captured by eNose technology in lung cancer. This is done by means of generating prediction models with Aethena, a data analysis program specifically developed for analysing VOC data.
仅有 15%的肺癌病例具有潜在的可治愈性。因此,人们非常关注一种快速、非侵入性的工具,以便更早地发现肺癌。电子鼻技术通过测量呼出气体中的挥发性有机化合物(VOC)来检测肺癌,这些 VOC 与肺癌有关。
Aeonose™ 的诊断准确性目前正在一项多中心前瞻性研究中进行研究,该研究纳入了 210 名疑似肺癌的患者,其中大约一半将被确诊为肺癌,另一半将被排除肺癌诊断。我们还将纳入 100-150 名健康对照者。eNose 公司(Aeonose™ 的供应商)使用一种名为 Aethena 的软件程序,该程序包括预处理、数据压缩和神经网络,以处理大数据分析。每次单独的呼气测量都包含一个包含数千个电导率值的数据矩阵。接下来,使用类似于 Tucker3 的算法进行数据压缩,得到一个向量。随后,在人工神经网络中输入不同预设的向量进行模型选择,以训练和评估结果。接下来,进行模型选择,选择用于优化性能的向量。最后,使用两种类型的交叉验证,即“留出 10%的样本进行交叉验证”和“装袋”,在重新计算判断模型时使用。然后,使用这些判断模型对新的、盲测的数据进行分类。
eNose 技术中的数据分析主要基于生成预测模型,这些模型需要进行内部和外部验证,以便最终在临床实践中使用。本文描述了通过 eNose 技术对肺癌进行大数据分析。这是通过使用 Aethena 生成预测模型来实现的,Aethena 是一种专门用于分析 VOC 数据的数据分析程序。